博碩士論文 108222029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.149.249.154
姓名 李律昕(Lu-Hsin Lee)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(A Structural Study of Iridium Oxide Grown on Ir(100) under Ambient Pressure Conditions)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-4-15以後開放)
摘要(中) 本實驗透過使用高能電子繞射(RHEED)、X-ray 光電子能譜(XPS)及穿隧電子掃描儀(STM)研究氧化銥薄膜在銥(001)樣品上的晶體結構及電子結構在高真空到近常壓環境下的成長機制,氧氣氣壓及曝量為控制氧化銥成長之主要之變因且樣品之成長溫度控制在 775 K 以利氧化銥成長。在氧氣曝量小於1.8 × 107 L時,銥(001)樣品上因被氧氣吸附而產生2 × 1的繞射結構,且在光電子能譜中銥金屬之 4f 電子軌域並無氧化的跡象,由此跡象推斷氧氣分子只是吸附在銥金屬表面,並無真正的變成金屬氧化物。增加氧氣曝量至1.8 × 108 L時,繞射結構從原本的2 × 1轉變至具有立體結構之繞射點,且繞射點的結構可以被解析為二氧化銥(IrO2)之(001)晶面朝上,在穿隧電子掃描儀之實驗中也可發現大量具一定高度之團簇(cluster)出現在表面,光電子能譜中的銥金屬之 4f 電子軌域開始些微氧化。增加氧氣曝量至6 × 108 L時,電子繞射實驗中出現二氧化銥(102)和(102̅)之兩相共存結構,繞射點間也開始漸漸出現繞射線,表示除了立體結構外,表面正在漸漸變得平整,穿隧電子掃描儀之實驗中也可以發現此變化,在光電子能譜中,銥金屬之 4f電子軌域開始劇烈氧化,經過計算,氧化層厚度可達 6 埃米並飽和不再增加。二氧化銥之(110)晶面只能在高於 1 torr 的氧氣環境中成長且反應時間需大於 30 分鐘,電子繞射實驗中表面出現明顯的立體結構與平面結構之共存態,隨著氧化層厚度增加至 18 埃米,因吸附物與金屬樣品之距離變遠,其交互作用應該要變小,因此我們懷疑其交互作用是來自於表面剛成長的氧化物而不是銥金屬基板,另外在穿隧電子掃描儀之實驗中,舉凡條紋或觸鬚狀結構出現在表面上,應證了我們上述的論點。為何二氧化銥之(110)晶面只能在高於 1 torr的氧氣環境中成長且反應時間需大於 30 分鐘?從熱力學第二定律出發,我們認為從銥金屬到反應形成氧化銥的過程應為不可逆反應,因此系統做功(系統亂度entropy)應隨著時間增加,使在中間態之氧化銥金屬能在氧化結束時找到適合其當下系統能量的結構,一旦結構因反應結束而被定義,更進一步的氧化既有的氧化層並不會進入原本不可逆之反應途徑,轉而進入另一條可逆反應中,因此二氧化銥(102)和(102̅)之兩相共存結構無法藉由更進一步的氧化變成二氧化銥之(110)晶面,同時兩種晶面都有出現飽和狀態,也就是在可逆反應中所說的平衡態,可以驗證我們的猜想。由此實驗可知,氧化銥的成長對於氣壓的改變非常敏感,其中反應機制值得探討,也希望對於氧化銥之成長機制的研究,能幫助未來在有機化合物於高反應性之氧化銥表面的催化反應的研究上有所幫助。

摘要(英) We used reflective high energy electron diffraction (RHEED), X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM) to investigate the structure and electronic state of iridium oxide layers grown by oxidizing Ir(001) at 775 K with oxygen pressure in between high vacuum to 5 torr. The result shows the surface only forms 2×1 oxygen adsorbed Ir(001) for oxygen dosage smaller than 1.8×〖10〗^7 L, indicating that Ir(001) is hard to be oxidized under this environment. The structure transforms to IrO2(001) with 3D structure form on the surface, where the oxide state can be observed in the valence band structure as the oxygen dosage increase to 1.8×〖10〗^8 L. Further increasing the oxygen dosage to 6×〖10〗^8 L results in the formation of the double-phase IrO2(102) & (102 ̅) surfaces, which has a huge oxide state signal in the valence band and shows the 3D structure with two symmetry phases coexisting on the surface. The IrO2(110) surface can be obtained if the pressure is larger than one torr. A flat surface coexisting with the 3D structure indicates that high surface-adsorbate interaction happens, which is counterintuitive to the general concept. The phenomenon can be elucidated as the strong surface oxide-adsorbate interaction, in which the dendritic island and stripe can form on the surface shown in the STM image. The XPS spectrum shows IrO2(110) eventually saturated at 18 Å with a dramatic enhancement of the oxide state. According to the second law of thermodynamics, the oxidation of clean Ir(001) could be an irreversible process so that the work of the intermediate state might determine the structure it will be transformed. Further oxidation on the oxide surface transfers to a reversible reaction so that the surface becomes equilibrium, eventually. On the other hand, the transformation from double-phase IrO2(102) & (102 ̅) to IrO2(110) is limited. This study demonstrated the step-by-step growth mechanism of iridium oxide under different oxygen dosages and pressure. The structure of iridium dioxide is very sensitive to oxygen pressure in the near ambient pressure environment. We hope this study can shed light on the study of organic compound reactions on stoichiometric IrO2.
關鍵字(中) ★ 氧化銥
★ 穿隧電子掃描儀
★ 反射式高能電子繞射
★ 近常壓X光光電子能譜儀
關鍵字(英)
論文目次 Chapter 1 Introduction……………………………………………….…….1
Chapter 1 References…………………………………………………………...3
Chapter 2 Literature Survey…………………………………………….4
2.1 5×1 Reconstruction & 1×1 Metastable State on Iridium…………4
2.2 2×1 Oxygen Adsorbed Ir(001) Surface…........................................7
2.3 Iridium Dioxide Grown in Near-Ambient Pressure Condition.10
2.3.1 The Facile C-H Bond Cleavage of CH4 on IrO2 (110) Surface……10
2.3.2 The Structure and Reactivity Investigation of IrO2 on Ir(100) Surface……………………………………………………………………………...13
2.3.3 The Electronic Structure of Rutile IrO2 and Amorphous IrOx……18
Chapter 2 References………………………………………………………….22
Chapter 3 Experimental Apparatus and Procedures…..24
3.1 Vacuum system……………………………………………………………..24
3.1.1 Introduction to vacuum…………………………………………..24
3.1.2 Introduction to a UHV system………………………………….25
3.1.3 Experimental Apparatus………………………………………. ...26
3.2 Reflection High Energy Electron Diffraction (RHEED)………..30
3.2.1 Electron Wave Properties and Diffraction Condition……30
3.2.2 Working Principle of RHEED………………………………….32
3.3 Scanning Tunneling Microscopy (STM)……………………………..33
3.3.1 Tunneling Effect Through a One-Dimensional Potential Barrier……………………………………………………………..33
3.3.2 Time-Independent Perturbation Theory Approach of Tunneling Effect…………………………………………………………...34
3.3.3 Working Principle of STM………………………………………35
3.3.4 RHK-UHV 300 System & Beetle STM Scan Head for UHV………………………………………………………………..………....37
3.3.5 STM Tip Preparation………………………………………….....39
3.4 X-ray Photoelectron Spectroscopy (XPS)…………………………..42
3.4.1 Photoelectric Effect of XPS……………………………………...43
3.4.2 Beer-Lambert Law…………………...……………………………44
3.4.3 The Near Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) System with Synchrotron Light Source…………………45
3.4.4 Iridium Oxide Thickness Calculation………………………..45
3.5 Experimental Procedure…………………….....…….………………….46
3.5.1 Sample Cleaning………………………………………………..…...46
3.5.2 Growth of Oxide Film & Measurement………………………47
Chapter 3 References………………………………………………………….50
Chapter 4 Results…………………………………………………………..…52
4.1 5×1 Reconstruction & 1×1 Metastable State of Ir(001)………...52
4.2 2×1 Oxygen Adsorbed Ir(001) Surface……………..………………..56
4.3 3D Cluster Iridium Dioxide…………………………………………….61
4.4 3D Double-Phase Iridium Dioxide…………………………..…….….66
4.5 2D & 3D Mixing Iridium Dioxide….………………………..…….….71
4.6 Thermal Decomposition of Iridium Dioxide……………..…….….77
Chapter 4 References………………………………………………………….83
Chapter 5 Discussion……………………………………………………..…85
5.1 Lattice Structure Evolution of the Oxidized Ir(001) Surface...85
5.2 Electronic Structure Evolution of the Oxidized Ir(001) Surface……88
5.3 Surface Morphology Evolution of the Oxidized Ir(001) Surface…………………………………………………………………………….89
5.4 The Morphology Transformation of 2×1 Oxygen Adsorbed Ir(001) Surface…………………………..……………………………….….….91
5.5 Lattice Compression of 3D Cluster Iridium Dioxide….........…..93
5.6 Structural Transformation of Large Dosage Oxygen Adsorption…………………………………………………………………...…..95
5.7 The Pressure Dependent 2D & 3D Mixing Iridium Dioxide…..96
Chapter 5 References………………………………………………………...100
Chapter 5 Conclusions……………………………….…………………..101

參考文獻 [1] R. Martin, M. Kin, A. Asthagiri, J. F. Weaver, ” Alkane Activation and Oxidation on Late-Transition-Metal Oxides: Challenges and Opportunities”, ACS Catalysis, Vol.11, 4682-4703, 2021.
[2] E. Zhu, M. Wu, H. Xu, B. Peng, Z. Liu, Y. Huang, Y. Li, ”Stability of Platinum-Group-Metal-Based Electrocatalysts in Proton Exchange Membrane Fuel Cells”, Advanced Functional Materials, Vol.32, No.30, 2022.
[3] J. Hou, M. Yang, C. Ke, G. Wei, C. Priest, Z. Qiao, G. Wu, J. Zhang, ”Platinum-Group-Metal Catalysts for Proton Exchange Membrane Fuel Cells: From Catalyst Design to Electrode Structure Optimization”, EnergyChem, Vol.2, No.1, 100023,2020.
[4] S. Fuentes, F. Flgueras, R. Gomez, ”Deactivation by coking of rhodium catalysts of widely varying dispersion”, Journal of Catalysis, Vol.68, No.2, 419-422, 1981
[5] J. Barbier, E. Churin, P. Marecot, J.C. Menezo, ”Deactivation by Coking of Platinum/Alumina Catalysts: Effects of Operating Temperature and Pressure”, Applied Catalysis, Vol.36, 277-285, 1988.
[6] J. Edvardsson, P. Rautanen, A. Littorin, M. Larsson, ”Deactivation and Coke Formation on Palladium and Platinum Catalysts in Vegetable Oil Hydrogenation”, Journal of the American Oil Chemists Society, Vol.78, No.3, 319-327, 2001.
[7] Z. Liang, T. Li, M. Kim, A. Asthagiri, J. F. Weaver, “Low-Temperature Activation of Methane on the IrO2(110) Surface“, Science, Vol. 356, 299-303, 2017.
[8] V. Pfeifer, et al., ” The Electronic Structure of Iridium and Its Oxides”, Vol.48, 261-273, 2016.
[9] Y. Bian, T. Li, J. F. Weaver, ” Structure and Reactivity of Iridium Oxide Layers Grown on Ir(100) by Oxidation at Sub-ambient O2 Pressures”, Journal of Physics D: Applied Physics, Vol. 52, 434002-434012, 2019.
[1] E. Lang, K. Muller, K. Heeinz, “LEED Intensity Analysis of the (1x5) Reconstruction of Ir(100)“, Surface Science, Vol.127, 347-365, 1983
[2] L. Hammer, W. Meier, A. Klein, P. Landfried, A. Schmidt, and K. Heinz, “Hydrogen-Induced Self-Organized Nanostructuring of the Ir(100) Surface“, Physics Review Letters, Vol. 91, No.15, 156101-1-4, 2003.
[3] J. Koppers, H. Michel, F. Nitschki, K. Wandelt and G. Ertl, “Xenon Adsorption as A Tool for Local Surface Structure Determination at Ir(100) surfaces“, Surface Science, Vol.89, 361-369, 1979
[4] J. T. Grant, “A LEED Study of the Ir(100) Surface“, Surface Science, Vol.18, 228-238, 1969
[5] G. Gilarowski, J. Mendez, H. Niehus, “Intial Growth of Cu on Ir(100)-(5x1)“, Surface Science, Vol.448, 290-304, 2000
[6] J. F. van der Veen, F.J. Himpsel, and D. E. Eastman, “Structure-Dependent 4f-Core-Level Binding Energies for Surface Atoms on Ir(111), Ir(100)-(5x1), and Metastable Ir(100)-(1x1)“, Physics Review Letters, Vol. 44, No.3, 189-192, 1980.
[7] P. Ferstl, T. Schmitt, M. A. Schneider, and L. Hammer, “Structure and Ordering of Oxygen on Unreconstructed Ir(100) “, Physics Review B, Vol. 93, 235406-1-13, 2016.
[8] I.A. Erikat, BA. Hamad, and J.M. Khalifeh, “Adsorption of O and CO on Ir(100) from first Principles“, The European Physics Journal B, Vol. 67, 35-41, 2009.
[9] S.H. Ma, Z.Y. Jiao, X.Z. Zhang, Z.X. Yang, and XQ. Dai, “A density Functional Theory Study of Ordered Oxygen Overlayers on Ir(100) “, The European Physics Journal B, Vol. 85, 216, 2012.
[10] K. Johnson, Q. Ge, S. Titmuss, and D. A. King, “Unusual Bridged Site for Adsorbed Oxygen Adatoms: Theory and Experiment for Ir(100)-(2x1)-O“, Joural of Chemical Physics, Vol. 112, No.23, 10460-10466, 2000.
[11] K. Anic, A. V. Bukhtiyarov, H. Li, C. Rameshan, G. Rupprechter, “CO Adsorption on Reconstructed Ir(100) Surfaces from UHV to mbar Pressure: A LEED, TPD, and PM-IRAS Study “, The Journal of Physical Chemistry C, Vol. 120, 10838-10848, 2016.
[12] Z. Liang, T. Li, M. Kim, A. Asthagiri, J. F. Weaver, “Low-Temperature Activation of Methane on the IrO2(110) Surface “, Science, Vol. 356, 299-303, 2017.
[13] Y. B. He, A. Stierle, W. X. Li, A. Farkas, N. Kasper, H. Over, “Oxidation of Ir(111): From O-Ir-O Trilayer to Bulk Oxide Formation“, The Journal of Physical Chemistry C, Vol.112, 11946-11953, 2008.
[14] Y. Bian, M. Kim, T. Li, A. Asthagiri, J. F. Weaver, “Facile Dehydrogenation of Ethane on the IrO2(100) Surface”, Journal of the American Chemical Society, Vol.140, 2665-2672, 2018.
[15] T. Li, M. Kim, Z. Liang, A. Asthagiri, J. F. Weaver, “Dissociative Chemisorption and Oxidation of H2 on the Stoichiometric IrO2(110) Surface”, Topics in Catalysis, Vol.61, 397-411, 2018.
[16] Y. Bian, T. Li, J. F. Weaver,” Structure and Reactivity of Iridium Oxide Layers Grown on Ir(100) by Oxidation at Sub-ambient O2 Pressures”, Journal of Physics D: Applied Physics, Vol. 52, 434002-434012, 2019.
[17] F. G. Sen, A. Kinaci, B. Narayanan, S. K. Gray, M. J. Davis, S. K. R. S. Sankaranarayanan, M. K. Y. Chan,” Towards Accurate Prediction of Catalytic Activity in IrO2 Nanoclusters via First Principles-Based Variable Charge Force Field”, Journal of Materials Chemistry A, Vol.3, 18970-18982, 2015.
[18] S. Doniach, M. Sanjic,”Many-Electron Singularity in X-Ray Photoemission and X-Ray Line Spectra from Metal”, Journal of Physics C: Solid State Physics, Vol.3, 285-291, 1970.
[19] V. Pfeifer, et al.,” The Electronic Structure of Iridium and Its Oxides”, Vol.48, 261-273, 2016.
[1] 蘇青森等編著,真空技術與應用,行政院國家科學委員會精密儀器發展中心,台灣 新竹市,2001。
[2] J. B. Hudson,” Surface Science: An Introduction”, 1998.
[3] User′s guide of MKS 974B
[4] The Instruction Manual of Thermo Riko GVH198 Infrared Heating System
[5] H. Shuji, "Reflection high-energy electron diffraction",
[6] M. P. Seah, W. A. Dench, "Quantitative electron spectroscopy of surface: a standard data base for electron inelastic mean free paths in solids", Surface and Interface Analysis, Vol. 1, NO.1, 1979
[7] C. Kittel,” Introduction to Solid State Physics 8th Edition”, 2004.
[8] B. P. S. Narayana, "A study of electronic structure and thermal stability of engineered SOI material"
[9] P. Ponath, "Construction and Assembly of a Scanning Tunneling Microscope"
[10] J. Bardeen, "Tunneling from a many-particle point of view", Physical Review Letters, Vol.6, No.2, January, 1961.
[11] C. J. Chen, "Introduction to scanning tunneling microscopy 3rd", Oxford Science Publication, 2021.
[12] J. Tersoff, D. R. Hamann," Theory and application for the scanning tunneling microscope", Physical Review Letters, Vol.50, No.25, January, 1983.
[13] H. J. Reittu, "Fermi’s golden rule and Bardeen’s tunneling theory”, Am. J. Phys, Vol.63, NO.10, October, 1995.
[14] J. A. Kubby, J. J. Boland, “Scanning tunneling microscopy of semiconductor surfaces”, Surface Science Report, Vol.26, 61-204, 1996.
[15] O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, “Scanning tunneling spectroscopy of high-temperature superconductor”, Review of Morden Physics, Vol.79, 353-419, October, 2006.
[16] R.J. Behm, et al., Scanning Tunneling Microscopy and Related Methods., Springer-Verlag, New York, USA, August, 1990.
[17] User’s guide of RHK-UHV 300
[18] R. Bernal, A. Avila, “Reproducible fabrication of scanning tunneling microscope tips” .
[19] H. Seyama, M. Soma, B. K. G. Theng, “X-ray photoelectron spectroscopy”, Handbook of clay science, 2013
[20] W. H. Doh, V. Papaefthimiou, S. Zafeiratos, “Applications of synchrotron-based x-ray photoelectron spectroscopy in the characterization of nanomaterials, Surface Science Tools for Nanomaterials Characterization, 2015.
[21] F. A. Stevie, C. L. Donley, “Introduction to x-ray photoelectron spectroscopy”, J. Vac. Sci. Technol. A, Vol38, NO.6, December, 2020
[1] E. Lang, K. Muller, K. Heeinz, “LEED Intensity Analysis of the (1x5) Reconstruction of Ir(100)“, Surface Science, Vol.127, 347-365, 1983
[2] L. Hammer, W. Meier, A. Klein, P. Landfried, A. Schmidt, and K. Heinz, “ Hydrogen-Induced Self-Organized Nanostructuring of the Ir(100) Surface“, Physics Review Letters, Vol. 91, No.15, 156101-1-4, 2003.
[3] J. F. van der Veen, F.J. Himpsel, and D. E. Eastman, “ Structure-Dependent 4f-Core-Level Binding Energies for Surface Atoms on Ir(111), Ir(100)-(5x1), and Metastable Ir(100)-(1x1)“, Physics Review Letters, Vol. 44, No.3, 189-192, 1980.
[4] Z. Liang, T. Li, M. Kim, A. Asthagiri, J. F. Weaver, “Low-Temperature Activation of Methane on the IrO2(110) Surface“, Science, Vol. 356, 299-303, 2017.
[5] G. Gilarowski, J. Mendez, H. Niehus, “Intial Growth of Cu on Ir(100)-(5x1)“, Surface Science, Vol.448, 290-304, 2000
[6] V. Pfeifer, et al., ” The Electronic Structure of Iridium and Its Oxides”, Vol.48, 261-273, 2016.
[7] K. Johnson, Q. Ge, S. Titmuss, and D. A. King, “Unusual Bridged Site for Adsorbed Oxygen Adatoms: Theory and Experiment for Ir(100)-(2x1)-O“, JOURNAL OF CHEMICAL PHYSICS, Vol. 112, No.23, 10460-10466, 2000.
[8] P. Ferstl, T. Schmitt, M. A. Schneider, and L. Hammer, “Structure and Ordering of Oxygen on Unreconstructed Ir(100) “, Physics Review B, Vol. 93, 235406-1-13, 2016.
[9] Y. B. He, A. Stierle, W. X. Li, A. Farkas, N. Kasper, H. Over, “Oxidation of Ir(111): From O-Ir-O Trilayer to Bulk Oxide Formation“, The Journal of Physical Chemistry C, Vol.112, 11946-11953, 2008.
[10] K. Yoshida, T. Kawai, T. Nambara, S. Tanemura, K. Saitoh, N. Tanaka, ” Direct Observation of Oxygen Atoms in Rutile Titanium Dioxide by Spherical Aberration Corrected High-Resolution Transmission Electron Microscopy”, Institution of Physics Publishing, Vol.17, 3944-3950, 2006.
[11] Y. Bian, T. Li, J. F. Weaver,” Structure and Reactivity of Iridium Oxide Layers Grown on Ir(100) by Oxidation at Sub-ambient O2 Pressures”, Journal of Physics D: Applied Physics, Vol. 52, 434002-434012, 2019.
[12] S.A. Dokukin, S.V. Kolesnikov , A.M. Saletsky, ” Dendritic Growth of the Pt–Cu Islands on Cu(111) Surface: Self-Learning Kinetic Monte Carlo Simulations”, Surface Science, Vol.689, 121464, 2019
[13] Z. Zhang, M. G. Lagally, “Atomistic Processes in the Early Stages of Thin-Film Growth“, Science, Vol. 276, 377-383, 1997.
[1] F. G. Sen, A. Kinaci, B. Narayanan, S. K. Gray, M. J. Davis, S. K. R. S. Sankaranarayanan, M. K. Y. Chan,” Towards Accurate Prediction of Catalytic Activity in IrO2 Nanoclusters via First Principles-Based Variable Charge Force Field”, Journal of Materials Chemistry A, Vol.3, 18970-18982, 2015.
指導教授 羅夢凡 審核日期 2023-4-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明