博碩士論文 109222039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.128.199.175
姓名 劉冠辰(Guan-Chen Liu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(The Effect of Au and Rh Nanoclusters on Methanol Decomposition on CuO/Cu(110))
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-4-14以後開放)
摘要(中) 經由蒸鍍生長在氧化銅上的金(Au)和銠(Rh)奈米粒子增加生長在Cu(110)單晶上的氧化銅薄膜對甲醇分解的活性。氧化銅薄膜有(2×1)氧化相和(2×1)和c(6×2)共存相兩種氧化銅相,分別由將Cu(110)曝露於7 – 40 L和1000 L的氧氣生成。氧化銅薄膜的結構由低能電子繞射(LEED)來監控,反應產物則是由熱脫附質譜(TPD)和光電子能譜(PES)來偵測。
在超高真空環境下,甲醇-d4 (CD3OD)在氧化銅薄膜上分解產生甲醛-d2 (CD2O)、氘分子(D2)和重水(D2O)。金和銠奈米粒子在氧化銅上增加甲醇分解的機率。銠奈米粒子促進一氧化碳的產生。除此之外,甲醛和水的產量隨著金和銠的覆蓋率增加而上升,相反地,氘分子的產量則是下降。氘分子產量下降是由氫原子和羥基(OD-)結合產生水導致。而且,在(2×1)氧化相和(2×1)和c(6×2)共存相兩種氧化銅薄膜上的金和銠奈米粒子對產量的增長百分比不同。
最小的0.05 ML金和銠奈米粒子或單原子不會增加甲醇在由7 L 和 1000 L曝氧量生成的氧化銅薄膜上的分解。特別是,0.05 ML的Rh小顆奈米粒子或是單原子在(2×1)和c(6×2)共存相的氧化銅上阻擋甲醇的分解。這由產量的降低並且甲醇的吸附量沒有減少來證明。
摘要(英) The reactivity of copper oxide films grown on Cu(110) single crystal (CuO/Cu(110)) toward methanol decomposition was shown to be enhanced by gold (Au) and Rhodium (Rh) nanoclusters formed by vapor deposition onto the copper oxide films. Two kinds of copper oxide phase were observed on the surface; (2×1) oxide phase and (2×1) and c(6×2) coexistence phase was yielded by exposing Cu(110) to 7 – 40 L and 1000 L of oxygen, respectively. The structures of the copper oxide films were characterized with low electron energy diffraction (LEED), and the reaction products were monitored with temperature programmed desorption (TPD) and synchrotron-based photoelectron spectroscopy (PES).
Decomposition of methanol-d4 (CD3OD) on CuO/Cu(110) produced formaldehyde-d2 (CD2O), molecular deuterium (D2) and deuterium water (D2O) under UHV conditions. Au and Rh nanoclusters supported on copper oxide films increased the probability of methanol decomposition. Rh nanoclusters facilitate the production of CO. Besides, the production of formaldehyde-d2 and deuterium water was increased with Au and Rh coverage, in contrast, that of deuterium molecules was reduced. The decrease in deuterium production resulted from the combination of deuterium molecules with hydroxyls (OD^-) to produce deuterium water. Moreover, copper oxide films formed with (2×1) oxide phase and (2×1) and c(6×2) coexistence phase showed different increased production after Au and Rh deposition.
The smallest Au and Rh nanoclusters (0.05 ML) nanoclusters, or single atoms, didn’t enhance methanol decomposition on copper oxide films formed by 7 and 1000 L of oxygen exposure. In particular, 0.05 ML Rh small nanoclusters, or single atoms, supported on copper oxide films with (2×1) and c(6×2) coexistence phase blocked the methanol decomposition. This was evidenced by the lower production and no decrease in the number of monolayer adsorbed methanol.
關鍵字(中) ★ 氧化銅
★ 銅(110)單晶
★ 金屬納米糰簇
★ 甲醇分解
關鍵字(英) ★ Copper Oxides
★ Cu(110)
★ Metal Nanoclusters
★ Methanol Decomposition
論文目次 Contents
摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
Chapter 1 Introduction 1
Chapter 2 Literature survey 3
2.1 Characterization of copper oxide films grown on Cu(110) 3
2.2 Catalysis enhancement by charge transfer between supported Au single atom and CuO support 6
2.3 The effect of nanocluster size on catalytic performance 9
2.4 Methanol decomposition on oxygen pre-dosed Cu(110) 11
2.5 Methanol decomposition on Rh nanoclusters supported by Al2O3/NiAl(100) 15
2.6 Formate production after methanol decomposition on CuO/Cu(110) 18
Chapter 3 Experimental process and apparatus 22
3.1 Experimental methods 22
3.1.1 Sample cleaning 23
3.1.2 Deposition of Au and Rh nanoclusters 25
3.1.3 Methanol adsorption and reaction 26
3.2 Temperature programmed desorption (TPD) 26
3.2.1 The order of desorption 27
3.2.2 Quadrupole mass spectrometer (QMS) 29
3.2.3 PID temperature controller 31
3.3 Synchrotron-based photoelectron spectroscopy (PES) 32
3.4 Low energy electron diffraction (LEED) 36
Chapter 4 Results and discussion 39
4.1 Growth of copper oxide films on Cu(110) 39
4.2 The effect of oxygen exposure for growing copper oxides on methanol decomposition 41
4.2.1 Methanol decomposition on Cu(110) and a partially oxidized Cu(110) surface 41
4.2.2 Methanol decomposition on a fully oxidized Cu(110) surface 48
4.2.3 Oxygen consumption during methanol decomposition 51
4.3 Methanol decomposition on Au nanoclusters supported on CuO 59
4.4 Methanol decomposition on Rh nanoclusters supported on CuO 69
4.5 0.05 ML Rh small nanoclusters, or single atoms, supported on copper oxide films block methanol decomposition 79
Chapter 5 Conclusion 88
References 89
參考文獻 [1] X. Zhou, Q. Shen, K. Yuan, W. Yang, Q. Chen, Z. Geng, J. Zhang, X. Shao, W. Chen, G. Xu, X. Yang, K. Wu, Unraveling Charge State of Supported Au Single-Atoms during CO Oxidation, Journal of the American Chemical Society 140(2) (2018) 554-557.

[2] G.R. Gruzalski, D.M. Zehner, J.F. Wendelken, Two adsorbate densities for Cu>(110)c(6 × 2)-O, Surface Science 147(2) (1984) L623-L629.

[3] L.D. Sun, M. Hohage, P. Zeppenfeld, Oxygen-induced reconstructions of Cu(110) studied by reflectance difference spectroscopy, Physical Review B 69(4) (2004) 045407.

[4] C.P. O′Brien, K.-H. Dostert, M. Hollerer, C. Stiehler, F. Calaza, S. Schauermann, S. Shaikhutdinov, M. Sterrer, H.-J. Freund, Supports and modified nano-particles for designing model catalysts, Faraday Discussions 188 (2016) 309-321.

[5] P.R. Davies, M. Bowker, On the nature of the active site in catalysis: the reactivity of surface oxygen on Cu (1 1 0), Catalysis Today 154(1-2) (2010) 31-37.

[6] S.M. Francis, F.M. Leibsle, S. Haq, N. Xiang, M. Bowker, Methanol oxidation on Cu(110), Surface Science 315(3) (1994) 284-292.

[7] P.R. Davies, G.G. Mariotti, Oxidation of methanol at Cu (110) surfaces: New TPD studies, The Journal of Physical Chemistry 100(51) (1996) 19975-19980.

[8] Elaine M. McCash, Surface Chemistry, Oxford University Press, 2001.

[9] Hans Lüth, Surface and Interfaces of Solid (2nd), Springer-Verlag, 1993.

[10] Skoog D.A. et al., Principles of Instrumental Analysis (4th), Saunders College, 1992.

[11] J. C. Vickerman, Surface Analysis – The Principal Techniques, Jon Wiley & Sons, 1997.

[12] A. K. Stantra and D.W. Goodman, J.Phys: Condens Matter, Vol.14, R31 - R62. 2002.

[13] D.j. O’Connor, B. A. Sexton, R. St. C. Smart, Surface Analysis Methods in Materials Science, Springer-Verlag, 1992.
[14] Y. W. Yang, L. J. Fan, “High-Resolution XPS Study of Decanethiol on Au(111):  Single Sulfur−Gold Bonding Interaction”, Langmuir, Vol. 18, pp. 1157 – 1164, 2002.

[15] J. Ghijsen, L.-H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Electronic structure of Cu 2 O and CuO, Physical Review B 38(16) (1988) 11322.

[16] P. Steiner, S. Hüfner, A. Freeman, D.-s. Wang, Surface effects in the valence band XPS spectrum of copper, Solid State Communications 44(5) (1982) 619-622.

[17] S. Sakong, A. Gross, Total oxidation of methanol on Cu (110): a density functional theory study, The Journal of Physical Chemistry A 111(36) (2007) 8814-8822.

[18] A. Carley, A. Owens, M. Rajumon, M. Roberts, S. Jackson, Oxidation of methanol at copper surfaces, Catalysis letters 37 (1996) 79-87.

[19] A. Carley, P. Davies, G. Mariotti, S. Read, Reaction pathways in methanol oxidation at Cu (110) surfaces, Surface science 364(1) (1996) L525-L529.

[20] B. Sexton, A. Hughes, N. Avery, A spectroscopic study of the adsorption and reactions of methanol, formaldehyde and methyl formate on clean and oxygenated Cu (110) surfaces, Surface science 155(1) (1985) 366-386.

[21] Feidenhans′l, R., Grey, F., Nielsen, M., Besenbacher, F., Jensen, F., Laegsgaard, E., Stensgaard, I., I, Jacobsen, K. W., Norskov, J. K., & Johnson, R. L. (1990). Oxygen chemisorption on Cu(110): A model for the c(6 x 2) structure. Physical review letters, 65(16), 2027–2030.

[22] Hung, T.-C.; Liao, T.-W.; Liao, Z.-H.; Hsu, P.-W.; Cai, P.-Y.; Lee, H.; Lai, Y.-L.; Hsu, Y.-J.; Chen, H.-Y.; Wang, J.-H.; et al. Dependence on Size of Supported Rh Nanoclusters in the Decomposition of Methanol. ACS Catal. 2015, 5, 4276−4287.
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2023-4-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明