博碩士論文 109521060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.188.211.8
姓名 吳翌楷(Yi-Kai Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 動態功能網路應⽤於急性缺⾎型腦中⾵後的運動功能變化之預測
(Dynamic functional network to investigate the function change of ischemic stroke patients during rehabilitation)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-2-1以後開放)
摘要(中) 本研究提出利用缺血性腦中風個案靜息態磁振造影影像資訊和運動功能量表,建立以腦區間的有效性連結來預測運動功能復原結果的線性回歸模型。建模的步驟包括利用靜息態功能性磁振造影建立運動腦區的動態因果模型、計算腦區之間的有效性連結、計算有效性連結與復健量表之間的相關性、選取與復健量表有顯著相關的有效性連結作為預測模型的特徵、使用所選取的特徵利用MATLAB Regression Learner App加以訓練以建立預測模型。
本研究將參與的病患依照中風梗塞位置分群為大腦梗塞、右大腦梗塞、左大腦梗塞、和腦幹梗塞等四個群,然後建立各群專屬的預測模型。這些研究資料是分三期收集,分別是中風剛發作時、中風發作後一個月、和中風發作後三個月;因此預測的時序包含以第一期的有效性連結去預測第二期或第三期的功能量表、以及以第二期的有效性連結去預測第三期的功能量表。
研究結果顯示全部預測模型的平均R2達到0.44,未加入臨床變數的預測模型平均R2為0.43,加入年齡、性別的預測模型平均R2為0.48,加入年齡、性別與梗塞體積的預測模型平均R2為0.42。這些結果顯示性別、年齡、梗塞體積等臨床變數加入與否對預測的能力並沒有顯著的影響。此外,四個病患群的平均R2為0.30、0.34、0.61、和0.52。
本研究所建立的全部模型中,有一些具有顯著的預測效果,未來也許可以應用於醫師在臨床中風診療、預後、以及照護上的決策之參考或輔助。
摘要(英) In this study, we use resting-state functional magnetic resonance imaging (rs-fMRI) of ischemic stroke patients and their motor functional scales to establish linear regression models that predict functional recovery with the effective connectivity between brain regions. The procedure of creating the predictive models including establishing dynamic causal models of motor brain regions with rs-fMRI, computing the effective connectivity between brain regions, evaluating the correlations between the effective connectivity of the edges (i.e., the pairs of brain regions) and the functional scales, selecting the edges corresponding to significant correlations, building predictive models featuring the selected edges, training the models with MATLAB Regression Learner App.
According to the infarct location, the patients were divided into four groups: supratentorial, right-hemispheric supratentorial, left-hemispheric supratentorial, and brainstem groups. Predictive models are developed for each group independently. The rs-fMRI were collected at three stages: the time of onset, one month after onset, and three months after onset. Meaningful predictions include predicting stage-2 or stage-3 motor recovery with stage-1 connectivity and predicting stage-3 motor recovery with stage-1 connectivity.
The research results showed that the mean R2 was 0.43 for the models consisting of effective connectivity only, 0.48 for the models consisting of effective connectivity, age, and sex, and 0.42 for the models consisting of effective connectivity, age, sex, and infarct volume. The mean R2 of all the models was 0.44. These results suggested that the predictivity was not improved by incorporating clinical parameters such as age and sex in the predictive model. The mean R2 of the four patient groups were 0.30, 0.34, 0.61, and 0.52, respectively.
Some of the predictive models established in this research attained statistical significance. These models might be useful in clinical applications to enhance or help post-stroke prognosis and patient care.
關鍵字(中) ★ 缺血性腦中風
★ 靜息態功能性磁振造影
★ 動態因果模型
★ 有效性連結
關鍵字(英) ★ ischemic stroke
★ resting state functional MRI
★ dynamic causal modeling
★ effective connectivity
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 vi
表目錄 xi
第一章 緒論 - 1 -
1.1 研究動機與目的 - 1 -
1.2 中風復健量表 - 3 -
1.2.1 雷氏修正量表 - 3 -
1.2.2 巴氏量表 - 4 -
1.2.3 伯格氏平衡量表 - 4 -
1.2.4 傅格-梅爾評估 - 5 -
1.3 神經模型 - 6 -
1.4 動態因果模型 - 7 -
1.5 靜息態功能性磁振造影 - 9 -
1.6 研究架構 - 10 -
第二章 研究方法 - 12 -
2.1 個案篩選 - 13 -
2.2 影像前處理 - 14 -
2.3 動態因果模型與有效性連結 - 16 -
2.4 多變數回歸 - 19 -
2.5 特徵選取與分析規劃 - 20 -
2.6 大腦透視圖 - 22 -
第三章 實驗結果 - 23 -
3.1 個案基本資料 - 23 -
3.2 梗塞位置在皮質區、放射冠、基底核之個案 - 24 -
3.3 梗塞位置在左半腦皮質區、放射冠、基底核之個案 - 41 -
3.4 梗塞位置在右半腦皮質區、放射冠、基底核之個案 - 58 -
3.5 梗塞位置在中腦、橋腦、延腦之個案 - 73 -
第四章 討論 - 88 -
第五章 結論與未來展望 - 95 -
參考文獻 - 96 -

參考文獻 [1] 許立奇:腦中風的簡介及其預後。取自:https://wd.vghtpe.gov.tw/snc/Fpage.action?muid=4432&fid=4007(2022年2月20日)。

[2] Rosaleena Mohanty, Anita M. Sinha, Alexander B. Remsik, et al., “Early Findings on Functional Connectivity Correlates of Behavior Outcomes of Brain-Computer Interface Stroke Rehabilitation Using Machine Learning,” Frontier in Neuroscience, Vol. 12, Article 624, 11 September 2018.

[3] Xilin Shen, Emily S Finn, Dustin Scheinost, Monica D Rosenberg, Marvin M Chun, Xenophon Papademetris and R Todd Constable. “Using connectome-based predictive modeling to predict individual behavior from brain connectivity,” Nature, Vol. 12, No. 3, 9 February 2017.

[4] Peter Zeidman, Amirhossein Jafarian, Nadège Corbin, “A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI,” Neuroimage, Vol. 200, Pages 174-190, 15 October 2019.

[5] R Bonita, R Beaglehole, “Modification of Rankin Scale: Recovery of motor function after stroke.” Stroke, Vol. 19, No. 12, Pages 1497-1500, Dec 1998.

[6] Mahoney F.I., Barthel D.W., “Functional evaluation: The Barthel Index.” Maryland State Medical Journal, Vol. 14, Pages 56-61, 1965.

[7] Katherine Berg, Sharon Wood-Dauphinee, JI Williams, “The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke.” Scandinavian journal of rehabilitation medicine, Vol. 27, Pages 27-36, 1 March 1995.

[8] Fugl-Meyer AR, Jääskö L, Norlin V, “The post hemiplegic patient. 1. A method for evaluation of physical performance.” Scandinavian Journal of Rehabilitation Medicine, Vol. 7, Pages 13-31, 1 Jan 1975.

[9] John Ashburner, Gareth Barnes, Chun-Chuan Chen, “SPM12 Manual.” University College London, May 25, 2015.

[10] Heidi Johansen-Berg, Helen Dawes, Claire Guy, “Correlation between motor improvements and altered fMRI activity after rehabilitative therapy”. Brain, Vol. 125, Pages 2731–2742. Dec 2002.

[11] Chaochen Wang, Takeshi Nishiyama, Shogo Kikuchi, “Changing trends in the prevalence of H. pylori infection in Japan (1908–2003): a systematic review and meta-regression analysis of 170,752 individuals.” Nature: Scientific Report, 14 Nov 2017.

[12] Mikai Rubinov, Olaf Sporns, “Complex network measures of brain connectivity: Uses and interpretations.” NeuroImage, Vol. 52, Pages 1059-1069, Sep 2010.

[13] Klaas Enno Stephan, Lars Kasper, Lee M. Harrison, “Nonlinear Dynamic Causal Models for fMRI”, NeuroImage, Vol. 42, Pages 649-662, 8 Aug 2008.

[14] Giulia Prando, Mattia Zorzi, Alessandra Bertoldo, “Sparse DCM for whole-brain effective connectivity from resting-state fMRI data”, NeuroImage, Vol. 208, Mar 2020.

[15] Karl J. Friston , Joshua Kahan , Bharat Biswal, “A DCM for resting state fMRI”, NeuroImage, Vol. 94, Pages 396-407, Jul 2014.

[16] M. Dash, H. Liu, “Feature Selection for Classification”, Intelligent Data Analysis, Vol 1, Pages 131-156, 1997.

[17] Isabelle Guyon, Andrè Elisseeff, “An Introduction to variable and feature selection”, Jouranl of Machine Learning Research, Vol. 3, Pages 1157-1182, Mar 2003.

[18] Cory S. Inman, G. Andrew James, Stephan Hamann et al, “Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke”, Neuroimage, Vol. 59, Pages 227-237, 2 Jan 2012.

[19] Anne K. Rehme, Gereon R. Fink, D. Yves von Cramon, Cristian Grefkes, “The Role of the Contralesional Motor Cortes for Motor Recovery in the Early Days after Stoke Assessed with Longitudinal fMRI”, Cerebral Cortex, Vol. 21, No. 4, Pages 756-768, Apr 2011.

[20] Meaghan, Roy-O’Reilly, Louise D. McCullough, “Age and Sex Are Critical Factors in ischemic Stroke Pathology”, Endocrinology, Vol. 159, No. 8, Pages 3120-3131, Aug 2018.

[21] Ali Alawieh, Jing Zhau, Wuwie Feng et al, “Factors affecting post-stoke motor recovery: Implications on neurotherapy after brain injury”, Behavioural Brain Research, Vol. 340, Pages 94-101, Mar 2018.

[22] Fátima de N. A. P. Shelton, Michael J.Reding, “Effect of lesion location on upper limb motor recovery after stroke”, Stoke, Vol. 32, Pages 107-112, Jan 2001.

[23] Karl J. Friston, “Functional and effective connectivity in neuroimaging: a synthesis”, Human Brain Mapping, 1994.

[24] Klaas Enno Stephen, Karl J. Friston, “Analyzing effective connectivity with fMRI”, Wiley Interdiscip Rev Cogn Sci, Vol. 1, No .3, Pages 446-459, Jun 2010.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2023-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明