博碩士論文 106581608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.119.29.204
姓名 浩丁(Zohauddin Ahmad)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具有高性能表現且適用於4-D/3-D FMCW LiDAR 系統的新型雪崩光電二極體
(Novel designed Avalanche Photodiode with enhanced performance for application in 4-D/ 3-D FMCW LiDAR systems)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 相較於脈衝TOF雷達,頻率調變連續波雷達提供獨特的優勢,例如(多個)物體的瞬時速度資訊、消除操作期間的盲點時間以及在工業上有許多的應用,例如汽車或軍事傳感的速度測量、手勢識別 (HGR) 和非接觸式生命體徵監測 (VSM)。特別是VSM的應用,醫療專業人員和醫療保健提供者定期監控生命體徵,具有極高速度靈敏度的FMCW雷達偵測系統非常需要對接收射頻(RF)訊號的小都普勒頻移有最小的相位雜訊影響。根據FMCW雷達計畫中微小的天線尺寸獲得實時4D圖像依然是個挑戰。達成目標最有效率的方法之一是FMCW LiDAR,他將FMCW雷達結構和光電(EO)和電光(OE)轉換模組結合。透過使用內部具有微小光學元件的微型FMCW LiDAR模組可以獲得光學波段1.55um的4-D圖像。此外這些LiDAR圖像通常在方位角和仰角展現出比FMCW雷達有更好的角解析度。此外,當我們的中心頻率從RF提升到光波,還可以期待高速度的靈敏度。商用雷射都普勒測儀器(LDV)已經證明擁有極高速度的靈敏度(~ nm/sec)。儘管如此,相較於由波長掃描雷射驅動的4-D FMCW LiDAR相比,LDV中靜態雷射的干涉訊號無法獲得具有絕對距離資訊的3-D輪廓。使用瞬時線寬與高性能靜止雷射依樣窄的波長掃描雷射,在4-D FMCW LiDAR 和 LDV中達到相對應的速度靈敏度是主要的挑戰。這是因為比較大的線寬會造成測距範圍縮小和對小都普勒頻率偏移的靈敏度降低。為了應對這個挑戰,SILO(自我注入鎖定振盪器)的概念已被改編並且運用在半導體雷射。SILO技術使用低頻的電訊號來穩定雷射的光頻率進而顯著地減少線寬。然而,即使使用SILO,相對於那些FMCW雷達傳輸端的掃瞄RF源,波長掃瞄雷射仍然會遇到更大的相位雜訊和非線性。對於高速度靈敏度的表現,這可能會限制FMCW LiDAR解決小都普勒頻率偏移的能力。為了同時降低 FMCW LiDAR 接收器端的相位和幅度雜訊,我們說明了該 FMCW LiDAR 的接收端如何以極高的速度靈敏度提供高解析度(3-D) + 瞬時速度(4-D)圖像,通過結合自我注入鎖定振盪器 (SILO) 和同時具有高響應度和高飽和電流的高性能雪崩光電二極管 (APD),分別最小化相位和幅度雜訊。與使用 p-i-n PD 接收器相比,具有 APD 的 LiDAR 系統可以提供更好的 4-D 圖像品質和更高的速度靈敏度,這是由於每個體素對比度的增強。此外,為了進一步提高我們 4-D 圖像中感測速度的靈敏度,我們的掃頻雷射由預編程波形驅動,使光學chirp波形線性化,並在不同時隙(混合波形)分別測量物體的深度和速度。因此,SILO系統產生了更高的速度靈敏度,這導致對於慢速移動(約5µm / sec)物體的4D影像品質比傳統RF接收器參考物體的品質顯著更高。
據我們所知,這裡實現的速度靈敏度(4-D 圖像約為 5 µm/sec)是迄今為止報導的所有 FMCW LiDAR 中最高的,例如在矽光子平台上的慢光光柵結構(75 mm/ 秒,400 毫米/秒),或光子晶體(19 毫米/秒)光束掃描儀和相位多樣性相干檢測(1500 毫米/秒)。由於基於 SILO 的接收端能夠降低在下變頻基帶信號中的相位雜訊,因此微小的都普勒頻移可以非常靈敏地檢測到。我們 FMCW LiDAR 系統中相位和強度雜訊的降低為下一代 4-D LiDAR 開闢了新的可能性
摘要(英) Compared to pulsed Time-Of-Flight (TOF) radar, Frequency Modulated Continuous Wave (FMCW) radar offers unique advantages, such as instantaneous velocity information of (multiple-) objects, elimination of blind time during operation and has a numerous application in the industry, such as velocity measurement for automotive or military sensing, Hand Gesture Recognition (HGR) and non-contact Vital-Sign Monitoring (VSM). In particular for the VSM application where the vital signs are routinely monitored by medical professionals and health care providers, extremely high velocity sensitivity in FMCW radar detection system is highly desirable with minimum influence of phase noise on the small Doppler frequency shift (< 1 Hz) in the received Radio-Frequency (RF) signals. However, obtaining a real-time 4D (3D + velocity) image based on the FMCW radar scheme with a compact antenna size remains a challenge. One of the effective solutions to achieve this goal is FMCW LiDAR, which combines the FMCW radar architecture with additional Electrical-to-Optical (EO) and Optical-to-Electrical (OE) conversion modules. 4-D images can be obtained at the optical wavelength of 1.55 µm by using a miniaturized FMCW LiDAR module with compact internal optics inside. Moreover, these LiDAR images usually exhibit much better angular resolution in both azimuth and elevation than those of FMCW radar. In addition, when we boost the central frequency from RF to optical wave, high velocity sensitivity can also be expected. Ultra-high velocity sensitivity (~ nm/sec) has been demonstrated in the commercial available laser doppler vibrometers [LDV]. Nevertheless, in contrast to 4-D FMCW LiDAR, which is driven by a wavelength sweeping laser, the 3-D profile with absolute distance information can’t be obtained by the interference signal from a static laser in LDV. The use of a wavelength sweeping laser with an instantaneous linewidth as narrow as that of a high-performance static laser is a major challenge in achieving comparable velocity sensitivity between 4-D FMCW LiDAR and LDV. This is because a larger linewidth can result in a reduced measurement range and lower sensitivity to small Doppler frequency shifts. To address this challenge, the concept of the SILO (Self Injection-Locked Oscillator) has been adapted and applied to semiconductor lasers. The SILO technique uses a low-frequency electrical signal to stabilize the optical frequency of the laser, which can result in a significant reduction in linewidth. However, even with the use of SILO, wavelength sweeping lasers can still suffer from larger phase noise and nonlinearity than those of a swept RF source on the transmitter side of the FMCW radar. This can limit the ability of the FMCW LiDAR to resolve small Doppler frequency shifts for high velocity sensitivity performance. In order to simultaneously reduce the phase and amplitude noises in the FMCW LiDAR receiver end, we illustrate how the receiving end of this FMCW LiDAR can provide high-resolution 3-D + instantaneous velocity (4-D) images with an extremely high velocity sensitivity by combining a self-injection-locked oscillator (SILO) and high-performance avalanche photodiode (APD), which simultaneously has high-responsivity and high saturation current, to minimize the phase and amplitude noise, respectively. Compared with using the p-i-n PD receiver, the LiDAR system with APD one can provide a much better quality of 4-D images with a higher velocity sensitivity due to the enhancements in contrast ratio of each voxel. Besides, to further improve the sensitivity for sensing velocity in our 4-D image, our sweeping laser is driven by a pre-programmed waveform to linearize the optical chirp waveform and separately measure the depth and velocity of object at different time slots (hybrid waveform). Consequently, the SILO system produces a higher velocity sensitivity, resulting in a considerably superior quality of 4-D images of a slow-moving (~ 5µm/sec) object to those of reference one with conventional RF receiver. To the best of our knowledge, the velocity sensitivity achieved here (~ 5 µm/sec with 4-D image) is the highest among all the FMCW LiDARs that have been reported so far such as with slow-light grating structure (75 mm/sec, 400 mm/sec) on silicon photonic platform, or photonic crystal (19 mm/sec) beam scanners and phase-diversity coherent detection (1500 mm/sec).Due to ability of the SILO-based receiving end to reduce phase noise in the down-converted baseband signals, a minor Doppler frequency shift can thus be detected with exceptional sensitivity. The reduction of phase and intensity noise in our FMCW LiDAR system opens up new possibilities for the next generation of 4-D LiDARs.
關鍵字(中) ★ 和非接觸式生命體徵監測
★ (自我注入鎖定振盪器)
★ 的高性能雪崩光電二極管電
★ FMCW LiDAR
關鍵字(英) ★ Avalanche Photodiode
★ FMCW LiDAR
★ Vital Sign monitoring
★ Self-injection locked oscillator
論文目次 Abstract……………………….…………………………………………i
Acknowledgement…………………………………………………..….iv
Table of Contents..…………………………………………………..…..v
List of figures……………………………………………………….…..vii
List of tables…………………………………………………………..…xi
Chapter 1 Introduction
1-1 Motivation………………………………………………………....1
1-2 Various LiDAR Architectures……………………………………..3
1-3 Progress in 4-D FMCW LiDAR…………….………………..…..14
1-4 An Overview of various detectors as a receiver in FMCW LiDAR system……………………………………………………….…....16
1-5 Limitations in velocity sensitivity and FMCW based application performance comparison …………………………..…………….21
1-6 Application of our work.………...………….………………..…..22
Chapter 2 Multiple-multiplication (M) layer Avalanche Photodiode for Coherent detection
2-1 Motivation for multiple- M layer design…………………………27
2-2 Device structure and fabrication of multiple-M layer APD’s…....28
2-3 Multiple M-Layer Device performances …………...……………31
2-4 APD’s performances comparison for LiDAR application………..42
2-5 Summary.…………………………………………………………43
Chapter 3 Measurement Set-up for 4-D FMCW LiDAR system
3-1 Wavelength Sweeping laser ………………………..……….…....46
3-2 Mechanical scanning mirror ………………………..…………....47
3-3 Self-injection locked oscillator (SILO) ………………………….48
3-4 System set-up for 4-D LiDAR system…...……………………....49
3-5 Measurements result 4-D based on FMCW laser driving waveform and motion images …………………………………………….....51
3-6 Enhanced velocity sensitivity measurement using Hybrid
waveform based laser driving…………………………………….58
3-7 Image quality comparison between p-i-n and APD′s receiver…...60
3-8 Summary ………………………………………………………...63
Chapter 4 Key components for PICs based FMCW LiDAR system
4-1 Motivation and Introduction……………………………………..66
4-2 Star coupler design using Rsoft……………………….…….........69
4-3 On-chip DBR laser design and its performance ………..………..72
4-4 Wavelength sweeping on-chip DBR laser …….………………....74
4-5 3D FMCW performance using on-chip DBR laser………………77
4-6 Optical Phased Array for beam scanning …….……………….....79 Chapter 5 Future Work
5-1 Future Work ……………………………………………………...83
PUBLICTION LIST .......................................88
參考文獻 [1.1] J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J.D. Beck, M.A. Kinch, A. Huntington, L.A. Coldren, J. Decobert, N. Tscherptner, "Recent advances in avalanche photodiodes," IEEE J. of Sel. Topics in Quantum Electron., vol. 10, no. 4, pp. 777-787, Aug. 2004.
[1.2] M. Nada, Y. Yamada and H. Matsuzaki, "Responsivity-Bandwidth Limit of Avalanche Photodiodes: Toward Future Ethernet Systems," IEEE J. of Sel. Topics in Quantum Electron., vol. 24, no. 2, pp. 1-11, Apr. 2018.
[1.3] R. Daniel, R. Almog, A. Ron, S. Belkin, Y. S. Diamand, “Modeling and measurement of a whole-cell bioluminescent biosensor based on a single photon avalanche diode,” Biosensors and Bioelectronics, vol. 24, no. 4, pp. 882-887, Dec. 2008.
[1.4] K. Morimoto, A. Ardelean, M.-L. Wu, A. C. Ulku, I. M. Antolovic, C. Bruschini, and E. Charbon, "Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications," Optica vol. 7, no. 4, pp. 346-354, Apr. 2020.
[1.5] K. Kuzmenko, P.Vines, A. Halimi, R. J. Collins, A. Maccarone, A. McCarthy, Z.M. Greener, J. Kirdoda, D. C. S. Dumas, L.F. Llin, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, "3D LIDAR imaging using Ge-on-Si single–photon avalanche diode detectors," Opt. Express, vol. 28, no. 2, pp. 1330-1344, Jan. 2020.
[1.6] M. S. Ferraro, W.S. Rabinovich, R. Mahon, J.L Murphy, W.R. Clark, W.D. Waters, K. Vaccaro, J.C. Campbell, "Position Sensing and High Bandwidth Data Communication Using Impact Ionization Engineered APD Arrays,” IEEE Photon. Technol. Lett., vol. 31, no. 1, pp. 58-61, Jan. 2019.
[1.7] X. Yi, S. Xie, B. Liang, L. W. lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan and J. P.R. David, "Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes, " Nat. Photonics, vol. 13, pp. 683–686, Jul. 2019.
[1.8] F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, I. Rech and R. Osellame,"Recent Advances and Future Perspectives of Single-Photon Avalanche Diodes for Quantum Photonics Applications," Advanced Quant. Technolog., vol. 4, no. 2, pp. 1-24, Feb. 2021.
[1.9] B. E. Kardynał, Z. L. Yuan and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nature Photonics, vol. 2, pp. 425-428, Jun. 2008.
[1.10] J. M. Arrazola, V. Bergholm, K. Brádler et al, “Quantum circuits with many photons on a programmable nanophotonic chip,” Nature, vol. 591, pp. 54–60, Mar. 2021.
[1.11] D. Chitnis and S. Collins, "A SPAD-Based Photon Detecting System for Optical Communications," J. Lightwave Technol. vol. 32, no. 10, pp.2028-2034, May. 2014.
[1.12] H. Abuella and S. Ekin, "Non-Contact Vital Signs Monitoring Through Visible Light Sensing," in IEEE Sensors Journal, vol. 20, no. 7, pp. 3859-3870, 1 April1, 2020, doi: 10.1109/JSEN.2019.2960194.
[1.13] Shuang Gao, Maurice O’Sullivan, and Rongqing Hui, "Complex-optical-field lidar system for range and vector velocity measurement," Opt. Express 20, 25867-25875 (2012).
[1.14] B. Behroozpour et al., "11.8 Chip-scale electro-optical 3D FMCW lidar with 8μm ranging precision," 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, pp. 214-216, doi: 10.1109/ISSCC.2016.7417983.
[1.15] Christopher V. Poulton, Ami Yaacobi, David B. Cole, Matthew J. Byrd, Manan Raval, Diedrik Vermeulen, and Michael R. Watts, "Coherent solid-state LIDAR with silicon photonic optical phased arrays," Opt. Lett. 42, 4091-4094 (2017).
[1.16] T. Baba et al., "Silicon Photonics FMCW LiDAR Chip With a Slow-Light Grating Beam Scanner," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 5: Lidars and Photonic Radars, pp. 1-8, Sept.-Oct. 2022, Art no. 8300208, doi: 10.1109/JSTQE.2022.3157824.
[1.17] https://www.electronicspecifier.com/products/sensors/what-is-driving-the-a
utomotive-lidar-and-radar-market.
[1.18] W. -C. Su, M. -C. Tang, R. E. Arif, T. -S. Horng and F. -K. Wang, "Stepped-Frequency Continuous-Wave Radar With Self-Injection-Locking
Technology for Monitoring Multiple Human Vital Signs," in IEEE
Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp.
5396-5405, Dec. 2019, doi: 10.1109/TMTT.2019.2933199.
[1.19] F. -K. Wang et al., "Review of Self-Injection-Locked Radar Systems for
Noncontact Detection of Vital Signs," in IEEE Journal of Electromagnetics,
RF and Microwaves in Medicine and Biology, vol. 4, no. 4, pp. 294-307, Dec.
2020, doi: 10.1109/JERM.2020.2994821.
[1.20] M. Alizadeh, G. Shaker, J. C. M. D. Almeida, P. P. Morita and S. Safavi-Naeini, "Remote Monitoring of Human Vital Signs Using mm-Wave FMCW Radar," in
IEEE Access, vol. 7, pp. 54958-54968, 2019, doi:
10.1109/ACCESS.2019.2912956.
[1.21] S. Crouch, "Velocity Measurement in Automotive Sensing: How FMCW Radar
and Lidar Can Work Together," in IEEE Potentials, vol. 39, no. 1, pp. 15-18, Jan.-Feb. 2020, doi: 10.1109/MPOT.2019.2935266.
[1.22] A. Martin et al., "Photonic Integrated Circuit-Based FMCW Coherent LiDAR," in Journal of Lightwave Technology, vol. 36, no. 19, pp. 4640-4645, Oct.1, 2018, doi: 10.1109/JLT.2018.2840223.
[1.23] Christopher V. Poulton, Ami Yaacobi, David B. Cole, Matthew J. Byrd, Manan Raval, Diedrik Vermeulen, and Michael R. Watts, "Coherent solid-state LIDAR with silicon photonic optical phased arrays," Opt. Lett. 42, 4091-4094 (2017).
[1.24]CLV-2534 Compact Laser Vibrometer.//hysen.com/wp content/uploads/2020/05/OM_DS_CLV-2534_E.pdf.
[1.25]Aeva launches ‘4D LiDAR on-chip for autonomous driving’https://optics.org/news/10/12/22
[1.26] S. Suyama, et al., "Doppler velocimeter and vibrometer FMCW LiDAR with Si photonic crystal beam scanner," Opt. Express, vol. 29, no 19, pp.30727-30734, Sep. 2021.
[1.27] Z. Xu, et al., "FMCW Lidar Using Phase-Diversity Coherent Detection to Avoid Signal Aliasing," IEEE Photon. Technology Letter., vol. 31, no. 22, pp. 1822-1825, Nov. 2019.
[1.28] M. Nada, Y. Yamada and H. Matsuzaki, "A High-Linearity Avalanche Photodiodes With a Dual-Carrier Injection Structure," in IEEE Photonics Technology Letters, vol. 29, no. 21, pp. 1828-1831, 1 Nov.1, 2017, doi: 10.1109/LPT.2017.2753262.
[1.29] P. Runge et al., "Waveguide Integrated Balanced Photodetectors for Coherent Receivers," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-7, March-April 2018, Art no. 6100307, doi: 10.1109/JSTQE.2017.2723844.
[1.30] Charbon, E.; Fishburn, M.; Walker, R.; Henderson, R.K.; Niclass, C. SPAD-based sensors. In TOF Range-Imaging Cameras; Springer: Berlin, Germany, 2013; pp. 11–38.
[1.31] https://www.hamamatsu.com/content/dam/hamamatsu photonics/sites/documents/99_SALES_LIBRARY/ssd/Photodetector_lidar_kapd0005e.pdf
[1.32] Stove, A. G. & Williams, M. B. FMCW Radar Linearizer. United State Patent, 5189427, (1993).
[1.33] Jin, W., Yang, QF., Chang, L. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 15, 346–353 (2021).
[1.34] W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, "Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser," Opt. Lett. 35, 2822-2824 (2010).
[2.1] H.-Y. Zhao, Naseem, A.- H. Jones, R.-L. Chao, Z. Ahmad, J.-C. Campbell, and J.-W. Shi, "High-Speed Avalanche Photodiodes with Wide Dynamic Range Performance," Journal of Lightwave Technology, vol. 37, no. 23, pp. 5945-5952, Dec. 2019.
[2.2] M. Nada, Y. Yamada and H. Matsuzaki, "A High-Linearity Avalanche Photodiodes With a Dual-Carrier Injection Structure," in IEEE Photonics Technology Letters, vol. 29, no. 21, pp. 1828-1831, 1 Nov.1, 2017, doi: 10.1109/LPT.2017.2753262.
[2.3] P. Runge et al., "Waveguide Integrated Balanced Photodetectors for Coherent Receivers," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-7, March-April 2018, Art no. 6100307, doi: 10.1109/JSTQE.2017.2723844.
[2.4] P. Adany, C. Allen, and R. Hui, "Chirped Lidar Using Simplified Homodyne Detection," J. Lightwave Technol. vol. 27, no. 16, pp. 3351-3357, Aug. 2009.
[2.5] X. Zhang, K. Kwon, J. Henriksson et al, “A large-scale microelectromechanical-systems-based silicon photonics LiDAR,” Nature, vol. 603, pp. 253–258, Mar. 2022.
[2.6] A. Martin, D. Dodane, L. Leviandier, D. Dolfi, A. Naughton, P.O. Brien, T. Spuessens, R. Baets, G. Lepage, P. Verheyen, P. D. Heyn, P. Absil, P. Feneyrou and J.´ Bourderionnet, “Photonic Integrated Circuit-Based FMCW Coherent LiDAR," Journal of Lightwave Technology, vol. 36, no. 19, pp. 4640-4645, Oct. 2018.
[2.7] B. J. Isaac, B. Song, S. Pinna, L. A. Coldren and J. Klamkin, “Indium Phosphide Photonic Integrated Circuit Transceiver for FMCW LiDAR”, IEEE J. of Sel. Topics in Quantum Electron., vol. 25, no. 6, pp. 1-7, Dec. 2019.
[2.8] Z. Ahmad, Y.-M. Liao, S.-I. Kuo, Y.-C. Chang, R.-L. Chao, Naseem, Y.-S. Lee, Y.-J. Hung, H.-M. Chen, J. Chen, J.-I. Guo, and J.-W. Shi, “High-Power and High-Responsivity Avalanche Photodiodes for Self-Heterodyne FMCW Lidar System Applications," IEEE Access, vol. 9, pp. 85661-85671, Jun. 2021.
[2.9] Z. Ahmad, S.-I. Kuo, Y.-C. Chang, R.-L. Chao, Naseem, Y.-S. Lee, Y.-J. Hung, H.-M. Chen, J. Chen, C.-S. Goh and J.-W. Shi, "Avalanche Photodiodes With Dual Multiplication Layers and Ultra-High Responsivity-Bandwidth Products for FMCW Lidar System Applications," IEEE J. of Sel. Topics in Quantum Electron., vol. 28, no. 2, pp. 1-9, April. 2022.
[2.10] M. A. Saleh, M. M. Hayat, P. P. Sotirelis, A. L. Holmes, J. C. Campbell, B. E. A. Saleh and M.-C. Teich, "Impact-ionization and noise characteristics of thin III-V avalanche photodiodes," IEEE Trans. on Electron Devices, vol. 48, no. 12, pp. 2722-2731, Dec. 2001.
[2.11] Naseem, Z. Ahmad, Y.-M. Liao, P.-S. Wang, S. Yang, S.-Y. Wang, H.-S. Chang, H.-S. Chen, J. J.-S. Huang, E. Chou, Y.-H Jan, and J.-W. Shi, “Avalanche Photodiodes with Composite Charge-Layers for Low Dark Current, High-Speed, and High-Power Performance,” IEEE J. of Sel. Topics in Quantum Electron., vol. 28, no. 2, pp. 1-10, April. 2022.
[2.12] Naseem, Zohauddin Ahmad, Rui-Lin Chao, Hsiang-Szu Chang, C.-J. Ni, H.-S. Chen, Jack Jia-Sheng Huang, Emin Chou, Yu-Heng Jan, and Jin-Wei Shi, “The enhancement in speed and responsivity of uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers,”Optics Express, vol. 27, no. 11, pp. 15495-15504, May, 2019.
[2.13] J. C. Campbell et al., "Recent advances in avalanche photodiodes," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no.4, pp. 777-787, July-Aug. 2004, doi: 10.1109/JSTQE.2004.833971.
[2.14] Z. W. Barber, J. R. Dahl, T. L. Sharpe, and B. I. Erkmen, “Shot noise statistics and information theory of sensitivity limits in frequency modulated continuous-wave ladar,” J. Opt. Soc. Am. A, vol. 30, no. 7, pp. 1335, Jul. 2013.
[2.15] Z. Ahmad, Y. Liao, S. Kuo, Y. Chang, R. Chao, Naseem, Y. Lee, and J. Shi, "Dual M-Layers Avalanche Photodiodes with Extremely Wide Dynamic Ranges and Ultra-High Bandwidth-Responsivity Product Performances in FMCW Lidar Systems," in Optical Fiber Communication Conference (OFC) 2021, P. Dong, J. Kani, C. Xie, R. Casellas, C. Cole, and M. Li, eds., OSA Technical Digest (Optica Publishing Group, 2021), paper F2C.7.
[2.16] F. -. Kuo et al., "Spectral Power Enhancement in a 100 GHz Photonic Millimeter-Wave Generator Enabled by Spectral Line-by-Line Pulse Shaping," in IEEE Photonics Journal, vol. 2, no. 5, pp. 719-727, Oct.2010, doi: 10.1109/JPHOT.2010.2064160.
[2.17] A. Hirata, M. Harada and T. Nagatsuma, "120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals," in Journal of Lightwave Technology, vol. 21, no. 10, pp. 2145-2153, Oct. 2003, doi: 10.1109/JLT.2003.814395.
[2.18] D. Tulchinsky, J. Boos, D. Park, P. Goetz, W. Rabinovich, and K.Williams, "High-Current Photodetectors as Efficient, Linear, and High-Power RF Output Stages," J. Lightwave Technol. 26, 408-416 (2008).
[2.19] G. S. Kinsey, J. C. Campbell and A. G. Dentai, "Waveguide avalanche photodiode operating at 1.55 μm with a gain-bandwidth product of 320 GHz," in IEEE Photonics Technology Letters, vol. 13, no. 8, pp. 842-844, Aug. 2001, doi: 10.1109/68.935822.
[2.20]C30662EH-1-InGaAs APD, 200um, TO-18. https://www.excelitas.com/product/c30662eh-1-ingaas-apd-200um-18.
[2.21] Photodetectors for LiDAR. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/Photodetector_lidar_kapd0005e.pdf.
[2.22] Lee, S. et al. High gain, low noise 1550  nm GaAsSb/AlGaAsSb avalanche photodiodes. Optica. 10, 147-154 (2023).
[3.1] B. J. Isaac, B. Song, S. Pinna, L. A. Coldren and J. Klamkin, “Indium Phosphide Photonic Integrated Circuit Transceiver for FMCW LiDAR”, IEEE J. of Sel. Topics in Quantum Electron., vol. 25, no. 6, pp. 1-7, Dec. 2019.
[3.2] N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Optics Express, vol. 17, no. 18, pp. 15991-15999, Aug.,2009.
[3.3] T. Hariyama, P. A. M. Sandborn, M. Watanabe, and M. C. Wu, “High-accuracy range-sensing system based on FMCW using low-cost VCSEL,” Optics Express, vol. 26, No. 7, pp. 9285-9297, April, 2018.
[3.4] X. Zhang, J. Pouls, and M. Wu, “Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR,” Optics Express, vol. 27, No. 7, pp. 9965-9974, April, 2019.
[3.5] J.-W. Shi, F.-M. Kuo, Nan-Wei Chen, S. Y. Set, C.-B. Huang, and J. E. Bowers, “Photonic Generation and Wireless Transmission of Linearly/Nonlinearly Continuously Tunable Chirped Millimeter-Wave Waveforms with High Time-Bandwidth Product at W-band,” IEEE Photonics Journal, vol. 4, pp. 215-223, Feb., 2012.
[3.6] Jhih-Min Wun, Chia-Chien Wei, Jyehong Chen, Chee Seong Goh, S. Y. Set, and Jin-Wei Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Optics Express, vol. 21, No. 9, pp. 11475-11481, May, 2013.
[3.7] O. C. Graydon, M. N. Zervas, and R. I. Laming, “Erbium-doped-fiber optical limiting amplifiers,” Journal of Lightwave Technology, vol. 13, pp. 732-739, May, 1995.
[3.8] A. Villafranca, J. A. Lázaro, I. Salinas, and I. Garcés, “Measurement of the linewidth enhancement factor in DFB lasers using a high-resolution optical spectrum analyzer,” IEEE Photon. Technol. Lett., vol. 17, pp. 2268-2270, Nov., 2005.
[3.9] Christopher V. Poulton, Ami Yaacobi, David B. Cole, Matthew J. Byrd, Manan Raval, Diedrik Vermeulen, and Michael R. Watts, "Coherent solid-state LIDAR with silicon photonic optical phased arrays," Opt. Lett. 42, 4091-4094 (2017).
[3.10] Rogers, C., Piggott, A.Y., Thomson, D.J. et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 590, 256–261 (2021). https://doi.org/10.1038/s41586-021-03259-y
[3.11] Saneyuki Suyama, Hiroyuki Ito, Ryo Kurahashi, Hiroshi Abe, and Toshihiko Baba, "Doppler velocimeter and vibrometer FMCW LiDAR with Si photonic crystal beam scanner," Opt. Express 29, 30727-30734 (2021)
[3.12] C. V. Poulton et al., "Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 5, pp. 1-8, Sept.-Oct. 2019, Art no. 7700108, doi: 10.1109/JSTQE.2019.2908555.
[3.13] G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiyal, Meas. Sci. Technol. 11, 305 (2000).
[3.14] Hegna, T.A.; Pettersson, H.; Teknova, K.G.; Laundal, K.M. Inexpensive 3-D Laser Scanner System Based on a Galvanometer Scan Head. In Proceedings of the Optical Measurement Systems for Industrial Inspection VII, Munich, Germany, 23–26 May 2011.
[3.15] Cristiano Niclass, Kota Ito, Mineki Soga, Hiroyuki Matsubara, Isao Aoyagi, Satoru Kato, and Manabu Kagami, "Design and characterization of a 256x64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor," Opt. Express 20, 11863-11881 (2012).
[3.16] Su, W.-C., Tang, M.-C., Arif, R. E., Horng, T.-S. & Wang, F. -K. Stepped-Frequency Continuous-Wave Radar With Self-Injection-Locking Technology for Monitoring Multiple Human Vital Signs. IEEE Transactions on Microwave Theory and Techniques 67, 5396-5405 (2019).
[3.17] Wang, F. -K. et al. Review of Self-Injection-Locked Radar Systems for Noncontact Detection of Vital Signs. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 4,294-307 (2020).
[3.18] Alizadeh, M., Shaker, G., Almeida, J. C. M. D., Morita, P. P. & Safavi-Naeini, S. Remote Monitoring of Human Vital Signs Using mm-Wave FMCW Radar. IEEE Access 7, 54958-54968 (2019).
[3.19] Stove, A. G. & Williams, M. B. FMCW Radar Linearizer. United State Patent, 5189427, (1993).
[3.20] Jin, W., Yang, QF., Chang, L. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 15, 346–353 (2021).
[3.21] W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, "Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser," Opt. Lett. 35, 2822-2824 (2010).
[3.22] Tseng, C.-H. & Lin, Y.-H. 24-GHz Self-Injection-Locked Vital-Sign Radar Sensor with CMOS Injection-Locked Frequency Divider Based on Push–Push Oscillator Topology. IEEE Microwave and Wireless Components Lett. 28, 1053-1055 (2018).
[3.23] Shuang Gao, Maurice O’Sullivan, and Rongqing Hui, "Complex-optical-field lidar system for range and vector velocity measurement," Opt. Express 20, 25867-25875 (2012)
[3.24] Ahmad, Z., Wang, PS., Naseem et al. Avalanche photodiodes with multiple multiplication layers for coherent detection. Sci Rep 12, 16541 (2022).
[3.25] Ahmad, Z.et al. Enhanced Velocity Sensitivity in 4-D FMCW LiDAR by Use of Avalanche Photodiode with Cascaded Multiplication Layer. Proc. Opt. Fiber Commun. Conf. (OFC) (2023), Paper M3F.2
[3.26] Z. Ahmad, et al., “High-Power and High-Responsivity Avalanche Photodiodes for Self-Heterodyne FMCW Lidar System Applications," IEEE Access, vol. 9, pp. 85661-85671, Jun. 2021.
[4.1] B. J. Isaac, B. Song, S. Pinna, L. A. Coldren and J. Klamkin, “Indium Phosphide Photonic Integrated Circuit Transceiver for FMCW LiDAR”, IEEE J. of Sel. Topics in Quantum Electron., vol. 25, no. 6, pp. 1-7, Dec. 2019.
[4.2] D. F. Welch et al., "The Realization of Large-Scale Photonic Integrated Circuits and the Associated Impact on Fiber-Optic Communication Systems," in Journal of Lightwave Technology, vol. 24, no. 12, pp. 4674-4683, Dec. 2006, doi: 10.1109/JLT.2006.885769.
[4.3] J. Klamkin et al., "Indium Phosphide Photonic Integrated Circuits: Technology and Applications," 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), 2018, pp. 8-13, doi: 10.1109/BCICTS.2018.8550947.
[4.4] R. Nagarajan, M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s,” J. Opt. Commun. Netw., vol. 10, no. 7, pp. 25–36, Jul. 2018.
[4.5] H. K. Tsang et al., “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides,” J. Appl. Phys., vol. 70, no. 7, pp. 3992–3994, 1991.
[4.6] L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett., vol. 32, no. 14, pp. 2031– 2033, 2007.
[4.7] S. Pinna, B. Song, L. A. Coldren, and J. Klamkin, “Vernier transceiver architecture for side-lobe-free and high-etendue LiDAR,” presented at the Conf. Lasers Electro-opt., OSA Tech. Dig. (online), San Jose, CA,USA, 2018.
[4.8] J. K. Doylend et al., “Fully integrated hybrid silicon two-dimensional beam scanner,” Opt. Express, vol. 23, no. 5, pp. 5861–5874, 2015.
[4.9]https://www.infinera.com/wp-content/uploads/The-Advantages-of-InP-Photonic-Integration-in-High-Performance-Coherent-Optics-0223-WP-RevB-0121.pdf
[4.10] J. K. Doylend et al., “Fully integrated hybrid silicon two-dimensional beam scanner,” Opt. Express, vol. 23, no. 5, pp. 5861–5874, 2015.
[4.11] N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Optics Express, vol. 17, no. 18, pp. 15991-15999, Aug.,2009.
[4.12] T. Hariyama, P. A. M. Sandborn, M. Watanabe, and M. C. Wu, “High-accuracy range-sensing system based on FMCW using low-cost VCSEL,” Optics Express, vol. 26, No. 7, pp. 9285-9297, April, 2018.
[4.13] X. Zhang, J. Pouls, and M. Wu, “Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR,” Opt. Exp., vol. 27, no. 7, pp. 9965–9974, Apr. 2019.
[4.14] L. M. Augustin, R. Santos, E. den Haan, S. Kleijn, P. J. A. Thijs, S. Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev, A. Richter, A. Bakker, and T. Korthorst, IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).
[4.15] K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, X. J. M. Leijtens, J. J. G. M. van der Tol, and M. K. Smit, Photonics Res.3, B60 (2015).
[4.16] K. Giewont, S. Hu, B. Peng, M. Rakowski, S. Rauch, J. C. Rosenberg, A. Sahin, I. Stobert, A. Stricker, K. Nummy, F. A. Anderson, J. Ayala, T. Barwicz, Y. Bian, K. K. Dezfulian, D. M. Gill, and T. Houghton, IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[4.17] W. Guo, P. R. A. Binetti, C. Althouse, M. L. Masanovic, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, IEEE J. Sel. Top. Quantum Electron. 19, 6100212 (2013).
[4.18] S. A. Miller, Y. C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, O. A. Jimenez Gordillo, U. D. Dave, and M. Lipson, Optica 7, 3 (2020).
[4.19] C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, IEEE J. Sel. Top. Quantum Electron.25, 1 (2019).
[4.20] C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D.Vermeulen, and M. R. Watts, Opt. Lett. 42, 4091 (2017).
[4.21] C. Rogers, A. Y. Piggott, D. J. Thomson, R. F. Wiser, I. E. Opris, S. A. Fortune, A. J. Compston, A. Gondarenko, F. Meng, X. Chen, G. T. Reed, and R. Nicolaescu, Nature 590, 256 (2021).
[4.22] S. Suyama, H. Ito, R. Kurahashi, H. Abe, and T. Baba, Opt. Express 29, 30727 (2021).
[4.23] P. C. Kuo, S. I. Kuo, J. W. Wang, Y. H. Jian, Z. Ahmad, P. H. Fu, Y. C. Chang, J. W. Shi, D. W. Huang, Y. Liu, C. H. Yeh, and C. W. Chow, Optical Fiber Communications Conference and Exhibition (OFC), paper M1C.7 (2022).
[4.24] T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, Opt. Express 20, 9396 (2012).
[4.25] H. W. Rhee, J. B. You, H. Yoon, K. Han, M. Kim, B. G. Lee, S. C. Kim, and H. H. Park, IEEE Photonics Technol. Lett. 32, 803 (2020).
[4.26] G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiyal, Meas. Sci. Technol. 11, 305 (2000).
[4.27] G. Y. Zhuo, C. H. Hsu, Y. H. Wang, and M. C. Chan, Appl. Phys. Lett.113, 083106 (2018).
[4.28] S. Chun, K. Kim, and D. Gweon, Rev. Sci. Instrum. 80, 073706 (2009).
[4.29] J. Notaros, C. V. Poulton, M. J. Byrd, M. Raval, and M. R. Watts, Opt. Lett. 42, 3510 (2017).
[4.30] J. Notaros, C. V. Poulton, M. Raval, and M. R. Watts, J. Lightwave Technol. 36, 5912 (2018).
[4.31] G. Hergenhan, B. Lucke, and U. Brauch, “Coherent coupling of verticalcavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements: concept and experimental verification,” Appl. Opt., vol. 42, no. 9, pp. 1667–1680, Mar. 2003.
[4.32] Sheng-I Kuo, Ju-Wei Wang, Zohauddin Ahmad, Po-Han Fu, Hsin-Hung Lin, Jin-Wei Shi, Ding-Wei Huang, and You-Chia Chang, "Reconfigurable scan lens based on an actively controlled optical phased array," Opt. Lett. 47, 3676-3679 (2022)
[5.1] S. Davies et al., “Narrow linewidth, high power, high operating temperature digital supermode distributed bragg reflector laser,” in ECOC, (2013), p. Th.1.B.3.
[5.2] M. Larson et al., “Narrow linewidth high power thermally tuned sampled-grating distributed bragg reflector laser,” in OFC, (2013), p. OTh3I.4.
[5.3] M. Larson et al., “Narrow linewidth sampled-grating distributed bragg reflector laser with enhanced side-mode suppression,” in OFC, (2015), p. M2D.1.
[5.4] Jin, W., Yang, QF., Chang, L. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 15, 346–353 (2021).
[5.5] W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, "Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser," Opt. Lett. 35, 2822-2824 (2010).
[5.6] CLV-2534 Compact Laser Vibrometer.//hysen.com/wp content/uploads/2020/05/OM_DS_CLV-2534_E.pdf.
[5.7] Zhang, X., Pouls, J. & Wu, M. C. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR. Opt. Express 27, 9965-9974 (2019).
[5.8] Su, W.-C., Tang, M.-C., Arif, R. E., Horng, T.-S. & Wang, F. -K. Stepped-Frequency Continuous-Wave Radar With Self-Injection-Locking Technology for Monitoring Multiple Human Vital Signs. IEEE Transactions on Microwave Theory and Techniques 67, 5396-5405 (2019).
[5.9] Wang, F. -K. et al. Review of Self-Injection-Locked Radar Systems for Noncontact Detection of Vital Signs. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 4,294-307 (2020).
[5.10] Ahmad, Z., Wang, PS., Naseem et al. Avalanche photodiodes with multiple multiplication layers for coherent detection. Sci Rep 12, 16541 (2022).
[5.11] Ahmad, Z.et al. Enhanced Velocity Sensitivity in 4-D FMCW LiDAR by Use of Avalanche Photodiode with Cascaded Multiplication Layer. Proc. Opt. Fiber Commun. Conf. (OFC) (2023), Paper M3F.2
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2023-4-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明