博碩士論文 106581607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.119.102.137
姓名 納希(NASEEM)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 於下一代以太網路系統的高速雪崩光電二極體/具有寬動態範圍的光電二極體
(High-Speed Avalanche Photodiodes/ Photodiodes with Wide Dynamic Ranges for Next Generation Ethernet System)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本論文中,我們展示了多種用於下世代乙太網系統的高速雪崩二極體/光電二極體。其中之一是一個具有 type-II 型 GaAs0.5Sb0.5 (p)/In0.53Ga0.47As (i) 混合吸收層的單載子傳輸光電二極管 (UTC-PD),這種設計可進一步提高 UTC-PD 的帶寬效率乘積。在我們提出的新 UTC-PD 結構中,p型 In0.53Ga0.47As 吸收層被 type-II 型 GaAs0.5Sb0.5 (p)/In0.53Ga0.47As (i) 混合型吸收層取代。由於 GaAs0.5Sb0.5 和 In0.53Ga0.47As 層之間界面處的能隙變窄和光吸收過程的增強,與具有相同厚度(0.7 μm)的純 In0.53Ga0.47As 吸收層和零光耦合損耗的 UTC-PD 相比,我們的元件的響應率提高了 16.7% 以上。我們展示的具有簡單頂部(正面)照明結構的元件具有大型的主動平台 (25 μm),在1.31 µm 光波長下,具有寬大的光電 (O-E) 帶寬 (33 GHz)、高響應度 (0.7 A/W) 和高飽電流 (>5 mA)。用倒裝晶片技術貼合基板透鏡並封裝的集成以及Rx在DR-4系統中的應用。我們的封裝方式讓這種元件無需使用任何外部透鏡即可實現極高的響應度 (0.95 A/W)、寬大的 O-E 帶寬 (33 GHz)、高飽和電流 (4 mA) 和高靈敏度 (-10 dBm OMA)。由於這種接收器沒有內部增益,因此需要強大的光學本地振盪器 (LO) 功率泵浦來處理自外差差拍裝置上的弱接收信號。為了克服上述問題,我們展示了一種基於 In0.52Al0.48As 的新型頂照(正照)式雪崩光電二極管 (APD)。
透過結合組合電荷層設計與特殊的 p 極面朝上蝕刻平台結構,將該 APD 的倍增 (M-) 層外圍(邊緣)的電場歸零,從而消除邊緣崩潰的現象。這導致我們的 APD 特性同時具備高速、高飽和功率、高響應度和低暗電流的特性,這對於高性能相干接收器應用是非常重要的。這個元件具有簡單的頂部(正面)收光結構,具有寬大的光電 (O-E) 帶寬 (21 GHz)、高響應率(0.9 Vbr 時為 5.5 A/W)和高達 8 mA 的飽和電流,且元件的有效直徑為 24 μm,這有便於光學對準。此外,自外差差拍裝置中的波長掃描激光器的非線性驅動可以產生類似波形的光脈衝序列,提供高達 158% 的有效光調製深度,從我們的 APD中產生最大光生射頻功率高達 +5.5 dBm(在10 GHz)。此外,為了滿足下世代乙太網系統的帶寬要求,我們需要 100G 的 APD。我們展示了一種具有 In0.52Al0.48As 倍增 (M-) 層的新型垂直照明雪崩光電二極管 (APD)。堆疊式的累增(M-)層設計與獨特的 p 極面朝上的平面結構結合,可以放寬增益帶寬積和暗電流之間的基本權衡。這導致我們的 APD 同時具有高響應度、高速、高飽和功率和低暗電流的特性。在大約 0.9 Vbr 的偏壓下操作時,所展示的元件具有簡單的頂部照明結構和 14 (24) μm 的大活動窗口 (平台) 直徑,表現出高響應率 (2.23 A/W)、寬大的光電帶寬 (30 GHz)、大增益帶寬積 (270 GHz)、低暗電流 (~200 nA) 和高達 11 mA 的飽和電流。為了進一步提高增益帶寬積 (GBP),我們將具有 14μm 窗口直徑的APD進行倒裝晶片貼合,使這個元件在 0.9Vbr 下具有寬帶寬 (36GHz)、高響應度 (3.4A/W)、低暗電流 (175nA) 、高 MMW輸出功率(40GHz 時為 -1dBm)和高飽和電流(12.5mA)。這種 APD 結構的卓越特性為進一步提高相干通信或 106 Gbit/sec PAM-4 應用的接收器靈敏度性能打開了新可能。
摘要(英) In this thesis, we demonstrated various types of High-Speed Avalanche photodiodes/Photodiodes (PDs) for Next generation ethernet system. One of them uni-traveling carrier photodiode (UTC-PD) with type-II GaAs0.5Sb0.5 (p)/In0.53Ga0.47As (i) hybrid absorber for further enhance the bandwidth-efficiency product of UTC-PD. In our proposed new UTC-PD structure, the p-type In0.53Ga0.47As absorption layer is replaced by the type-II GaAs0.5Sb0.5 (p)/In0.53Ga0.47As (i) hybrid absorber. Due to the narrowing of the bandgap and enhancement of the photo-absorption process at the type-II interface between the GaAs0.5Sb0.5 and In0.53Ga0.47As layers, our device shows an over 16.7 % improvement in the responsivity as compared to that of UTC-PD with the same thickness of pure In0.53Ga0.47As absorber (0.7 μm) and a zero optical coupling loss. Our demonstrated device with a simple top-illuminated structure offers a large active mesa (25 μm), a wide optical-to-electrical (O-E) bandwidth (33 GHz), a high responsivity (0.7 A/W), and a high saturation current (>5 mA) under 1.31 µm optical wavelength. Integration with a substrate lens for flip-chip bonding package and the application of Rx in DR-4 system. Such device can achieve a very-high responsivity (0.95 A/W), wide O-E bandwidth (33 GHz), high saturation current (4 mA), and high-sensitivity (-10 dBm OMA) without using any external lens in our package.Since this kind of receiver doesn’t have internal gain, therefore it requried strong optical local-oscillator (LO) power pumping to process the waek receive signal on the self heterodyne beating setup.In order to overcome the aforementioned isuse, a novel In0.52Al0.48As based top-illuminated avalanche photodiode (APD) is demonstrated. By combining the composite charge-layer design with a special p-side up etched mesa structure to zero the electric (E)-field at the periphery of this APD’s multiplication (M-) layer, the edge breakdown phenomenon can be eliminated. This in turn leads to the simultaneous high-speed, high-saturation-power, high responsivity, and low-dark current performance of our APDs characteristics, which are essential for high-performance coherent receiver applications. The demonstrated device with its simple top-illuminated structure exhibits a wide optical-to-electrical (O-E) bandwidth (21 GHz), high responsivity (5.5 A/W at 0.9 Vbr), and saturation current as high as 8 mA with a large active diameter of 24 μm for easy optical alignment. Furthermore, the nonlinear driving of a wavelength sweeping laser in the self-heterodyne beating setup can generate an optical pulse train like waveform, providing an effective optical modulation depth of up to 158%, which leads to a maximum photo-generated RF power (at 10 GHz) from our APD be as high as +5.5 dBm. Futhermore, in order to fulfill the bandwidth requirement for next generation ethernet systems, we require 100G APDs. We demonstrated a novel vertical-illuminated avalanche photodiode (APD) with a In0.52Al0.48As multiplication (M-) layer. The cascaded M-layer design combined with the unique p-side up mesa structure allows relaxation of the fundamental trade-off between the gain-bandwidth product and the dark current. This leads to the simultaneous high-responsivity, high-speed, high-saturation-power, and low-dark current characteristics of our APDs. At around 0.9 Vbr operation, the demonstrated device with its simple top-illuminated structure and large active window (mesa) diameter of 14 (24) μm exhibits a high responsivity (2.23 A/W), wide optical-to-electrical bandwidth (30 GHz), large gain-bandwidth product (270 GHz), low dark current (~200 nA), and a saturation current as high as 11 mA. In order to further improve Gain Bandwidth Product (GBP), flip-chip bonding APDs with 14μm window diameters are demonstrated having wide-bandwidth (36GHz), high-responsivity (3.4A/W), low dark current (175nA) and high MMW output power (-1dBm at 40GHz) can be achieved simultaneously with 12.5mA Isat under 0.9Vbr. The excellent performance of this APDs structure opens up new possibilities to further enhance the sensitivity performance of receivers for coherent communications or 106 Gbit/sec PAM-4 applications.
關鍵字(中) ★ 雪崩光電二極體
★ 光電二極體
★ 太網路系
關鍵字(英) ★ AVALANCHE PHOTODIODE
★ PHOTODIODE
★ ETHERNET SYSTEM
論文目次 Abstract……………………… ……………………………………......................…....I
Acknowledgement…………………………………..……………….......................V
Table of Contents..…………………...……...……………………............…...VI
List of figures………...……………………………………….................…….…VII
List of tables……………………………………...…………………..................XIII
Chapter 1 Introduction……………………..…………………...............………..1
1-1Development of the Ethernet System……....…………..…………......1
1-2 Application of Coherent Receiver……………………….……........…..4
1-3 Evolution of Passive Optical Network (PON)………….…................................................9
1-4 Avalanche Photodiodes (APDs)/PDs design trade-offs and review....................................................12
1-5 Challenge in (APDs)/PDs Package……………………...……..........21

Chapter 2 Type-II Hybrid Absorber Photodiodes for 400G DR4.......................................................28
2-1 Motivation of GaAs0.5Sb0.5/In0.53Ga0.47As Type-II Absorber / Collector in PDs…………….......................…….29
2-2 Device Structure……………………………………………..................…….32
2-3 Measurement Setup………………………………………….....................35
2-4 Device Measurement Results……………………………............………..37
2-5 Sensitivity Measurement…………………………………...............………43
2-6 Summary……………………………………………………........................…..44

Chapter 3 25G Avalanche Photodiodes with composite charge layer.....................................................48
3-1 Motivation of Composite Charge layer and special mesa structure.................................................49
3-2 Device Structure…………………………….………………….................50
3-3 Measurement Setup..……………………………………………..................53
3-4 Device Measurement Results………………………………...........…….55
3-5 Summary……………………………………………………….........................…63

Chapter 4 Dual Multipication (M-) Layer Avalanche Photodiodes towards 100G operation…………………………………………….......68
4-1 Development Avalanche Photodiode with Dual Multipication-layer……………………………………………….............………………..68
4-2 Optimized thickness of the Absorber, Dual M-Layer and Collector Layer…………..…………………………………………...............………...69
4-3 Device Measurement Results..……….………..........…………………..72
4-4 Sensitivity Measurement………………………………………................86
4-5 Summary…………………………………………………….........................……88

Chapter 5 Conclusion and Future Work…………………………...........…93
5-1 Conclusion………………………………………………………...................93
5-2 Future Work……………………………………………………...................94

Publication List…………………………………………………….....................100
參考文獻 CHAPTER 1
1.1 T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature, vol. 187, pp. 493-494, 1960.
1.2 R. P. Riesz, “High-Speed Semiconductor Photodiodes,” Review of Scientific Instruments, vol. 33, no. 9, pp. 994-998, 1962.
1.3 F. P. Kapron, D. B. Keck and R. D. Maurer, “Radiation Losses in glass optical waveguides,” Applied Physics Letters, vol. 17, no. 10, pp. 423-425, 1970.
1.4 https://www.iab.com/news/study-finds-internet-economy-grew-seven-times-faster/
1.5 Naseem et al., "Top-Illuminated Avalanche Photodiodes With Cascaded Multiplication Layers for High-Speed and Wide Dynamic Range Performance," in Journal of Lightwave Technology, vol. 40, no. 24, pp. 7893-7900, 15 Dec.15, 2022, doi: 10.1109/JLT.2022.3204743.
1.6 C. Xie and J. Cheng, "Coherent Optics for Data Center Networks," 2020 IEEE Photonics Society Summer Topicals Meeting Series (SUM), 2020, pp. 1-2, doi: 10.1109/SUM48678.2020.9161052.
1.7 J. Cheng, C. Xie, Y. Chen, X. Chen, M. Tang and S. Fu, "Comparison of Coherent and IMDD Transceivers for Intra Datacenter Optical Interconnects," 2019 Optical Fiber Communications Conference and Exhibition (OFC), 2019, pp. 1-3.
1.8 P. Runge, G. Zhou, F. Ganzer, S. Seifert, S. Mutschall, and A. Seeger,“Polarisation Insensitive Coherent Receiver PIC for 100Gbaud communication,” in Proc. OFC’16 (2016), paper Tu2D.5.
1.9 K. N. Nguyen, P. J. Skahan, J. M. Garcia, E. Lively, H. N. Poulsen, D. M. Baney, and D. J. Blumenthal, “Monolithically integrated dual-quadrature receiver on InP with 30 nm tunable local oscillator,” Opt. Express 19(26), B716–B721 (2011).
1.10 S. B. Estrella, L. A. Johansson, M. L. Mašanovi’c, J. A. Thomas, and J. S. Barton, “Widely tunable compact monolithically integrated photonic coherent receiver,” IEEE Photonics Technol. Lett. 24(5), 365–367 (2012).
1.11 M. Lu, H.-C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photonics Technol. Lett. 25(11), 1077–1080 (2013).
1.12 T.Okoshi and K.Kikuchi, Coherent optical fiber communications, Kluwer Academic Publishers, 1988.
1.13 P. Adany, C. Allen, and R. Hui, “Chirped Lidar Using Simplified Homodyne Detection,” IEEE/OSA Journal of Lightwave Technology, vol. 27, pp. 3351-3357, Aug., 2009.
1.14 J. Cheng, C. Xie, M. Tang, and S. Fu, “Hardware Efficient Adaptive Equalizer for Coherent Short-Reach Optical Interconnects,” IEEE Photonics Letters, Vol. 31, pp. 1249-1252, 2019.
1.15 J. Cheng, C. Xie, M. Tang and S. Fu, “A Comparative Study of Intradyne and Self- homodyne Systems for Next Generation Intra-datacenter Optical Interconnects,”2019 OptoElectronics and Communications Conference (OECC), paper TuP4-B2, Fukuoka, Japan, Jul 2019.
1.16 P. Runge et al., “Monolithic InP QPSK receiver chipwith a variable optical attenuator for colourless WDM detection,” IEEE Photon. Technol. Lett. vol. 26, no. 4, pp. 349–351, Feb. 2014.
1.17 H. Yagi et al., “InP-based p-i-n-photodiode array integrated with 90° hybrid using butt-joint regrowth for compact 100 Gb/s coherent receiver,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, Nov./Dec. 2014, Art. no. 3900107.
1.18 Y. Kurata et al., “Heterogeneously integrated PLC with low-loss spot size converter and newly developed waveplate PBS for DC-DP-16QAM receiver,” J. Lightw. Technol., vol. 33, no. 6, pp. 1202–1209, Mar. 2015.
1.19 Z. Zhang et al., “Hybrid photonic integration on a polymer platform,” J. Photon., vol. 2, no. 3, pp. 1005–1026, 2015.
1.20 https://www.viavisolutions.com/en-us/fttx-network-design-deployment
1.21 R. Borkowski, H. Schmuck, G. Cerulo, H. Debrégeas and R. Bonk, "Single-Wavelength Symmetric 50 Gbit/s Equalization-Free NRZ IM/DD PON with up to 33 dB Loss Budget and Fiber Transmission over >40 km," 2019 Optical Fiber Communications Conference and Exhibition (OFC), 2019, pp. 1-3.
1.22 N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto and K. Motoshima, "100 Gb/s to 1 Tb/s Based Coherent Passive Optical Network Technology," in Journal of Lightwave Technology, vol. 36, no. 8, pp. 1485-1491, 15 April15, 2018.
1.23 Yimin Kang, Han-Din Liu, Mike Morse, Mario J Paniccia, Moshe Zadka, Stas Litski, Gadi Sarid, Alexandre Pauchard, Ying-Hao Kuo, Hui-Wen Chen, et al. Monolithic germanium/silicon avalanche photodiodes with 340 ghz gain{bandwidth product. Nature photonics, 3(1):59, 2009.
1.24 M. Nada, F. Nakajima, T. Yoshimatsu, Y. Nakanishi, A. Kanda, T. Shindo, S. Tatsumi, H. Matsuzaki and K. Sano, "Inverted p-down Design for High-Speed Photodetectors," Photonics 2021, 8, no. 2, 39. https://doi.org/10.3390/photonics8020039.
1.25 https://www.olympuslifescience.com/zh/microscoperesource/primer/digitalimaging/concepts/avalanche/
1.26 M. A. Itzler, K. K. Loi, S. McCoy, N. Codd, “High-performance, manufacturable avalanche photodiodes for 10 Gb/s optical receivers,” Proc. OFC 2000, Baltimore, MD, USA, vol. 4, pp. 324-326, 2000.
1.27 Mohammad A. Saleh, Majeed M. Hayat, Paul P. Sotirelis, Archie L. Holmes, Joe C. Campbell, Bahaa E. A. Saleh and Malvin Carl Teich”Impact-Ionization and Noise Characteristics of Thin III–V Avalanche Photodiodes,” IEEE Transactions on Electron Devices, vol. 48, pp. 2722-2731, DEC 2001.
1.28 E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y. Tokuda, and T. Ishikawa, “Degradation Mode Analysis on Highly Reliable Guarding-Free Planar InAlAs Avalanche Photodiodes,” IEEE/OSA Journal of Lightwave Technology, vol. 25, pp. 3686-3693, Dec., 2007.
1.29 B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photon. Tech. Lett., vol. 15, pp. 1898-1900, Sep., 2006.
1.30 M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi and H. Matsuzaki, "Triple-mesa Avalanche Photodiode With Inverted P-Down Structure for Reliability and Stability," in Journal of Lightwave Technology, vol. 32, no. 8, pp. 1543-1548, April15, 2014, doi: 10.1109/JLT.2014.2308512.
1.31 M. Nada, Y. Yamada and H. Matsuzaki, "Responsivity-Bandwidth Limit of Avalanche Photodiodes: Toward Future Ethernet Systems," IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-11, March-April 2018.
1.32 K. Kato, "Ultrawide-band/high-frequency photodetectors," in IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 7, pp. 1265-1281, July 1999, doi: 10.1109/22.775466
1.33 Albis Optoelectronics AG, Moosstrasse 2a, 8803 Rueschlikon, Switzerland. (Product: APD20D1 on Submount).
1.34 J.-M. Wun, C.-H. Lai, N.-W. Chen, J. E. Bowers, and J.-W. Shi, “Flip-chip bonding packaged THz photodiode with broadband high-power performance,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2462–2464, Dec. 2014.

CHAPTER 2
2.1 J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Light. Technol., vol. 5, no. 10, pp. 1339–1350, 1987.
2.2 https://www.researchgate.net/publication/275039208_Silicon_Photomultipliers/figures
2.3 T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics and Optoelectronics, 1997, vol. 13, pp. 83–87.
2.4 K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microwave Theory Tech. 47(7), 1265-1281 (1999).
2.5 J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun,“Dynamic analysis of high-efficiency InP based photodiode for 40 Gbit/sec optical interconnect across a wide optical window (0.85 to 1.55 m),” IEEE/OSA Journal of Lightwave Technology, 33(4), 921-927 (2015).
2.6 J.-W. Shi, C.-Y. Li, K.-L. Chi, J.-M. Wun, Y.-M. Hsin, and S. D. Benjamin, “Large-area p-i-n photodiode with high-speed and high-efficiency across a wide optical operation window (0.85 to 1.55 μm),” IEEE J. of Sel. Topics in Quantum Electronics, 20(6), 3800807 (2014).
2.7 S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications” IEEE Photon. Tech. Lett., 15(12), 1761-1763 (2003).
2.8 J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55μm wavelength,” IEEE Photon. Technol. Lett., 17(9), 1929-1931 (2005).
2.9 X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA Journal of Lightwave Technology, 34(1), 73-78 (2016).
2.10 Y. Muramoto, H. Fukano, and T. Furuta, “A polarization-independent refracting-facet uni-traveling-carrier photodiode with high efficiency and large bandwidth,” IEEE/OSA Journal of Lightwave Technology, 24(10), 3830-3834 (2006).
2.11 A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE, Infrared Technology and Applications XXXVIII 8353, 83533D (2012).
2.12 N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2m optical communication systems,” IEEE Photon. Technol. Lett. 27(14), 1469-1472 (2015).
2.13 Sidhu, Rubin et al. “A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells.” IEEE Photonics Technology Letters 17 (2005): 2715-2717.
2.14 R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181-182 (2006).
2.15 J.-M. Wun, Y.-W. Wang, and J.-W. Shi, “Ultra-fast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. of Sel. Topics in Quantum Electronics, 24(2), 8500207 (2018).
2.16 Albis Optoelectronics AG, Moosstrasse 2a, 8803 Rueschlikon, Switzerland. (Product: PD40C1), http://www.albisopto.com/albis_product/pd40c1-56-gbaud-photodiode-with-enhanced-responsivity/
2.17 X. Li, S. Demiguel, N. Li, J. C. Campbell, D. L. Tulchinsky, and K. J. Williams, “Backside illuminated high saturation current partially depleted absorber,” Electron. Lett., vol. 39, pp. 1466–1467, 2003.
2.18 A. Dyson, I. D. Henning, and M. J. Adams, “Comparison of type I and type II heterojunction unitravelling carrier photodiodes for terahertz generation,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 2, pp. 277–283, Mar./Apr. 2008.
2.19 I. D. Henning, M. J. Adams, Y. Sun, D. G. Moodie, D. C. Rogers, P. J. Cannard, S. “Jeevan” Dosanjh, M. Skuse, and R. J. Firth, “Broadband antenna-integrated, edge-coupled photomixers for tuneable terahertz sources,” IEEE J. Quantum Electron., vol. 46, no. 10, pp. 1498–1505, Oct. 2010.
2.20 E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Exp., vol. 18, pp. 11105–11110, 2010.
2.21 E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 509– 517, Mar. 2012.
2.22 M. J. Fice, E. Rouvalis, L. Ponnampalam, C. C. Renaud, and A. J. Seeds, “Telecommunications technology-based terahertz sources,” Electron. Lett., vol. 460, pp. 28–31, 2010.
2.23 A. Beck, G. Ducournau, M. Zaknoune, E. Peytavit, T. Akalin, J. F. Lampin, F. Mollot, F. Hindle, C. Yangand, and G. Mouret, “High-efficiency unitravelling-carrier photomixer at 1.55 μm and spectroscopy application up to 1.4 THz,” Electron. Lett., vol. 44, no. 22, pp. 1320–1321, 2008.
2.24 J.-W. Shi, F.-M. Kuo, and M.-Z. Chou, “A linear cascade near-ballistic uni-traveling-carrier photodiodes with extremely high saturation-current bandwidth product (6825mA-GHz, 75mA/91GHz) under a 50Ω Load,” in Proc. Opt. Fiber Commun. Collocated Nat. Fiber Opt. Eng. Conf. , 2010, pp. 1–3.
2.25 A. Wakatsuki, T. Furuta, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Highpower and broadband sub-terahertz wave generation using a j-band photomixer module with rectangular-waveguide output port,” in Proc. 33rd Int. Conf. Millimeter Terahertz Waves, Pasadena, CA, USA, Sep. 2008, pp. 1–2.
2.26 T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in Proc. Tech. Dig. IEEE Int. Topical Meeting Microw. Photon., 2009, pp. 1–4.
2.27 Intelligent Epitaxy Technology, Inc., 1250 E Collins Blvd, Richardson, TX 75081, http://intelliepi.com
2.28 M.S. Park and J.H. Jang, “GaAs0.5Sb0.5 lattice matched to InP for 1.55 m photo-detection,” Electron. Lett., 44(8), 549-551 (2008).
2.29 M. Nada, Y. Muramoto, H. Yokoyama and H. Matsuzaki, “High-speed high-power-tolerant avalanche photodiode for 100-Gb/s applications,” Proc. IEEE Photonic Society Meeting, San Diego, CA, USA TuA1.4 (2014).
2.30 https://www.lightwaveonline.com/data-center/article/16654650/data-center-interconnects-the-road-to-400g-and-beyond
2.31 G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes”, IEEE Trans. Microwave Theory Tech. 51(4), 1227-1233 (2003).
2.32 Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55μm wavelength,” IEEE Photon. Technol. Lett. 18(8), 938-940 (2006).
2.33 J.-W. Shi and C.-W. Liu, "Design and analysis of separate-absorption-transport-charge-multiplication traveling-wave avalanche photodetectors," IEEE/OSA Journal of Lightwave Technology 22(6), 1583-1590 (2004).
2.34 N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150GHz,” IEEE Photon. Technol. Lett. 10(3), 412-414 (1998).

CHAPTER 3
3.1 M. Nada, Y. Yamada, and H. Matsuzaki, “Responsivity-bandwidth limit of avalanche photodiodes: Toward further ethernet systems,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 2, Mar./Apr. 2018, Art. no. 3800811.
3.2 Product: APD 16L on Submount, Albis Optoelectronics AG, Rueschlikon, Switzerland, 2014.
3.3 M. Huang et al., “Germanium on silicon avalanche photodiode,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 2, Mar./Apr. 2018, Art. no. 3800911.
3.4 Kang, Y.; Liu, H.-D.; Morse, M.; Paniccia, M.J.; Zadka, M.; Litski, S.; Sarid, G.; Pauchard, A.; Kuo, Y.-H.; Chen, H.-W.; et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nat. Photonics 2009, 3, 59–63.
3.5 Campbell, J.C.; Demiguel, S.; Ma, F.; Beck, A.; Guo, X.; Wang, S.; Zheng, X.; Li, X.; Beck, J.D.; Kinch, M.A.; et al. Recent advances in avalanche photodiodes. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 777–787.
3.6 Rouvie, A.; Carpentier, D.; Lagay, N.; Decobert, J.; Pommereau, F.; Achouche, M. High Gain×Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes. IEEE Photon. Tech. Lett. 2008, 20, 455–457.
3.7 Nada, M.; Muramoto, Y.; Yokoyama, H.; Ishibashi, T.; Matsuzaki, H. Triple-mesa Avalanche Photodiode with Inverted P-Down Structure for Reliability and Stability. IEEE OSA J. Lightwave Tech. 2014, 32, 1543–1548.
3.8 Nada, M.; Yoshimatsu, T.; Muramoto, Y.; Yokoyama, H.; Matsuzaki, H. Design and Performance of High-Speed Avalanche Photodiodes for 100-Gb/s Systems and Beyond. IEEE OSA J. Lightwave Tech. 2015, 33, 984–990.
3.9 https://ethernetalliance.org/technology/2020-roadmap/
3.10 M. Nada, T. Yoshimatsu, F. Nakajima, K. Sano and H. Matsuzaki, "A 42-GHz Bandwidth Avalanche Photodiodes Based on III-V Compounds for 106-Gbit/s PAM4 Applications," J. Lightwave Technol. vol. 37, no. 2, pp. 260-265, Jan., 2019.
3.11 C. Xie and J. Cheng, "Coherent Optics for Data Center Networks," 2020 IEEE Photonics Society Summer Topicals Meeting Series (SUM), Cabo San Lucas, Mexico, pp. 1-2, July, 2020.
3.12 J. Cheng, C. Xie, Y. Chen, X. Chen, M. Tang and S. Fu, “Comparison of Coherent and IMDD Transceivers for Intra Datacenter Optical Interconnects,” Optical Fiber Communications Conference and Exhibition (OFC’2019), San Diego, CA, USA, W1F.2, Mar., 2019.
3.13 B. F. Aull, E. K. Duerr, J. P. Frechette, K. A. McIntosh, D. R. Schuette, and R. D. Younger, “Large-Format Geiger-Mode Avalanche Photodiode Arrays and Readout Circuits,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, pp. 3800510, March/April, 2018.
3.14 C.V. Poulton, A. Yaacobi, D.B. Cole, M.J. Byrd, M. Raval, D. Vermeulen and M.R. Watts. "Coherent solid-state LIDAR with silicon photonic optical phased arrays," Opt. Lett., vol. 42, no. 20, pp. 4091-4094, Oct., 2017
3.15 P. J. M. Suni, J. E. Bowers, Larry Coldren, S. J. Ben Yoo “Photonic Integrated Circuits for Coherent Lidar,” 18th Coherent Laser Radar Conference (CLRC 2016), Boulder, Colorado, USA, pp. 1-6, June, 2016
3.16 S. Crouch, “Advantages of 3D Imaging Coherent Lidar for Autonomous Driving Applications,” 19th Coherent Laser Radar Conference (CLRC 2018), Okinawa, Japan, pp. 1-4, June, 2018.
3.17 P. Adany, C. Allen, and R. Hui, “Chirped Lidar Using Simplified Homodyne Detection,” J. Lightwave Technol. vol., 27, pp. 3351-3357, Aug., 2009.
3.18 M. Anagnosti, C. Caillaud, J.-F. Paret, F. Pommereau, G. Glastre, F. Blache, and M. Achouche, “Record Gain x Bandwidth (6.1 THz) Monolithically Integrated SOA-UTC Photoreceiver for 100-Gbit/s Applications,” J. Lightwave Technol. vol., 33, pp. 1186-1190, March, 2015.
3.19 Y.-T. Han, D.-H Lee, J.-U. Shin, S.-H. Park, S.-T. Kim, S.-M. Shin, H.-B. Kim, B. Yoon, Y. Baek, "A Compact 100G-ER4 ROSA Realized by Hybrid Integration of SOA and Lensed PIN-PDs for QSFP28 Transceivers," Optical Fiber Communications Conference and Exhibition (OFC’2019), San Diego, CA, USA, W3E.3, March, 2019.
3.20 J-S Choe, W- Han, D.J. Kim, J-H. Kim, C.J. Youn, D-Y. Kim, Y-H. Kwon, E-S Nam, "Optimization of spot-size converter for low polarization dependent loss of waveguide photodetector," Optics Express, vol. 21, no. 25, pp. 30175-30182, Dec., 2013.
3.21 J. Y. Huh, S-K. Kang, J. H. Lee, J. K. Lee, S. M. Kim, "Highly alignment tolerant and high-sensitivity 100Gb/s (4 × 25Gb/s) APD-ROSA with a thin-film filter-based de-multiplexer," Optics Express, vol. 24, no.24, pp. 27104-27114, Nov., 2016.
3.22 P. Runge, G. Zhou, T. Beckerwerth, F. Ganzer, S. Keyvaninia, S. Seifert, W. Ebert, S. Mutschall, A. Seeger, and M. Schell, "Waveguide Integrated Balanced Photodetectors for Coherent Receivers," IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-7, March-April, 2018.
3.23 Hao-Yi Zhao, Naseem, Andrew H. Jones, Rui-Lin Chao, Zohauddin Ahmad, Joe C. Campbell, and Jin-Wei Shi, "High-Speed Avalanche Photodiodes with Wide Dynamic Range Performance," J. Lightwave Technol., vol. 37, no. 23, pp. 5945-5952, 1 Dec., 2019.
3.24 B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photon. Tech. Lett., vol. 15, pp. 1898-1900, Sep., 2006.
3.25 Y. L. Goh, J. S. Ng, C. H. Tan, W. K. Ng, and J. P. R. David, “Excess noise measurement in In0.53Ga0.47As,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2412–2414, Nov., 2005.
3.26 B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 6, Nov./Dec. 2019, Art. no. 8000107.
3.27 N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Exp., vol. 17, no. 18, pp. 15991–15999, Aug. 2009.
3.28 T. Hariyama, P. A. M. Sandborn, M. Watanabe, and M. C. Wu, “Highaccuracy range-sensing system based on FMCWusing low-cost VCSEL,” Opt. Exp., vol. 26, no. 7, pp. 9285–9297, Apr. 2018.
3.29 X. Zhang, J. Pouls, and M. Wu, “Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR,” Opt. Exp., vol. 27, no. 7, pp. 9965–9974, Apr. 2019.
3.30 J.-W. Shi et al., “Photonic generation and wireless transmission of linearly/ nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photon. J., vol. 4, no. 1, pp. 215–223, Feb. 2012.
3.31 J.-M.Wun et al., “Photonic chirped radio-frequency generator with ultrafast sweeping rate and ultra-wide sweeping range,” Opt. Exp., vol. 21, no. 9, pp. 11475–11481, May 2013.
3.32 O. C. Graydon, M. N. Zervas, and R. I. Laming, “Erbium-doped-fiber optical limiting amplifiers,” J. Lightw. Technol., vol. 13, no. 5, pp. 732–739, May 1995.
3.33 M.S. Park and J.H. Jang, “GaAs0.5Sb0.5 lattice matched to InP for 1.55 μm photo-detection,” Electron. Letters, vol. 44, No. 8, pp. 549-551, April, 2008.
3.34 G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55 μm with a gain-bandwidth product of 320 GHz,” IEEE Photonics Tech. Lett., vol. 13, pp. 842–844, Aug. 2001.
3.35 K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
3.36 Naseem, Z. Ahmad, R.-L. Chao, H.-S. Chang, C.-J. Ni, H.-S. Chen, J. J-.S. Huang, E. Chou, Y.-H. Jan, and J.-W. Shi, “The enhancement in speed and responsivity of uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers,” Optics Express, vol. 27, no. 11, pp. 15495-15504, May, 2019.
3.37 Y.-S. Wu; J.-W. Shi; P.-H. Chiu, “Analytical Modeling of a High Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55 μm Wavelength,” IEEE Photon. Technol. Lett., vol. 18, no. 8, pp. 938–940.April, 2006.
3.38 F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral Power Enhancement in a 100-GHz Photonic Millimeter-Wave Generator Enabled by Spectral Line-by-Line Pulse Shaping,” IEEE Photonics Journal, vol. 2, no. 5, pp. 719-727, Oct., 2010.
3.39 A. Hirata, M. Harada and T. Nagatsuma, "120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals," J. Lightwave Technol., vol. 21, no. 10, pp. 2145-2153, Oct., 2003.
3.40 D. Tulchinsky, J. Boos, D. Park, P. Goetz, W. Rabinovich, and K. Williams, "High-Current Photodetectors as Efficient, Linear, and High-Power RF Output Stages," J. Lightwave Technol., vol. 26, no. 4, pp. 408-416. Feb., 2008.

CHAPTER 4
4.1 R.B. Emmons, “Avalanche-Photodiode Frequency Response,” Journal of Applied Physics, 38, 3705–3714, 1967.
4.2 J. Cheng, C. Xie, Y. Chen, X. Chen, M. Tang and S. Fu, “Comparison of Coherent and IMDD Transceivers for Intra Datacenter Optical Interconnects,” Optical Fiber Communications Conference and Exhibition (OFC’2019), San Diego, CA, USA, Mar. 2019, W1F.2. M.
4.3 Anagnosti, C. Caillaud, J.-F. Paret, F. Pommereau, G. Glastre, F. Blache, and M. Achouche, “Record Gain x Bandwidth (6.1 THz) Monolithically Integrated SOA-UTC Photoreceiver for 100-Gbit/s Applications,” J. Lightwave Technol. vol., 33, no. 6, pp. 1186-1190, March 2015.
4.4 Zohauddin Ahmad, Sheng-I Kuo, You-Chia Chang, Rui-Lin Chao, Naseem, Yi-Shan Lee, Yung-Jr Hung, Huang-Ming Chen, Jyehong Chen, Chee Seong Goh, and Jin-Wei Shi "Avalanche Photodiodes with Dual Multiplication Layers and Ultra-High Responsivity-Bandwidth Products for FMCW Lidar System Applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2, pp. 1-9, March-April 2022, Art no. 3800709, doi: 10.1109/JSTQE.2021.3062637.
4.5 P. Runge, G. Zhou, T. Beckerwerth, F. Ganzer, S. Keyvaninia, S. Seifert, W. Ebert, S. Mutschall, A. Seeger, and M. Schell, "Waveguide Integrated Balanced Photodetectors for Coherent Receivers," IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-7, March-April 2018.
4.6 Naseem, Zohauddin Ahmad, Yan-Min Liao, Po-Shun Wang, Sean Yang, Sheng-Yun Wang, Hsiang-Szu Chang, H.-S. Chen, Jack Jia-Sheng Huang, Emin Chou, Yu-Heng Jan, and Jin-Wei Shi, “Avalanche Photodiodes with Composite Charge-Layers for Low Dark Current, High-Speed, and High-Power Performance,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2, pp. 1-10, March-April 2022, Art no. 3801910, doi: 10.1109/JSTQE.2021.3111895.
4.7 M. Nada, Y. Yamada, and H. Matsuzaki, “A High-Linearity Avalanche Photodiodes with a Dual-Carrier Injection Structure,” IEEE Photon. Technol. Lett, vol. 29, no. 21, pp. 1828-1831, Nov., 2017.
4.8 J. Wei, F. Xia and S. R. Forrest, "A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode," in IEEE Photonics Technology Letters, vol. 14, no. 11, pp. 1590-1592, Nov. 2002, doi: 10.1109/LPT.2002.803894.
4.9 B. Wang, Z. Huang, Y. Yuan, D. Liang, X. Zeng, M. Fiorentino, and R. G. Beausoleil, "64 Gb/s low-voltage waveguide SiGe avalanche photodiodes with distributed Bragg reflectors," Photonics Research, vol. 8, no. 7, pp. 1118-1123, July 2020.
4.10 T. Okimoto, K. Ashizawa, H. Mori, K. Ebihara, K. Yamazaki, S. Okamoto, K. Horino, Y. Ohkura, H. Yagi, M. Ekawa and Y. Yoneda, "106-Gb/s Waveguide AlInAs/GaInAs Avalanche Photodiode with Butt-joint Coupling Structure," 2022 Optical Fiber Communications Conference and Exhibition (OFC), 2022, pp. 01-03.
4.11 T. Beckerwerth, R. Behrends, F. Ganzer, P. Runge and M. Schell, "Linearity Characteristics of Avalanche Photodiodes For InP Based PICs," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2, pp. 1-8, March-April 2022, Art no. 3803408, doi: 10.1109/JSTQE.2021.3127853.
4.12 J-S Choe, W- Han, D.J. Kim, J-H. Kim, C.J. Youn, D-Y. Kim, Y-H. Kwon, E-S Nam, "Optimization of spot-size converter for low polarization dependent loss of waveguide photodetector," Optics Express, vol. 21, no. 25, pp. 30175-30182, Dec., 2013.
4.13 J. Y. Huh, S-K. Kang, J. H. Lee, J. K. Lee, S. M. Kim, "Highly alignment tolerant and high-sensitivity 100Gb/s (4 × 25Gb/s) APD-ROSA with a thin-film filter-based de-multiplexer," Optics Express, vol. 24, no.24, pp. 27104-27114, Nov., 2016.
4.14 Albis Optoelectronics AG, Moosstrasse 2a, 8803 Rueschlikon, Switzerland. (Product: APD20D1 on Submount)
4.15 J.-M. Wun, C.-H. Lai, N.-W. Chen, J. E. Bowers and J.-W. Shi “Flip-Chip Bonding Packaged THz Photodiode With Broadband High-Power Performance,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2462-2464, Dec., 2014.
4.16 Naseem, Z. Ahmad, Y.-M. Liao, R.-L. Chao, P.-S. Wang, Y.-S. Lee, S. Yang, S.-Y. Wang, H.-S. Chang, H.-S. Chen, J. J.-S. Huang, E. Chou, Y.-H. Jan and J.-W. Shi, “Avalanche Photodiodes with Dual Multiplication Layers for High-Speed and Wide Dynamic Range Performances,” Photonics, vol. 8, no. 4, p. 98, Mar. 2021.
4.17 S. Wang et al., "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," in IEEE Photonics Technology Letters, vol. 13, no. 12, pp. 1346-1348, Dec. 2001, doi: 10.1109/68.969903.
4.18 Ning Duan et al., "High-speed and low-noise SACM avalanche photodiodes with an impact-ionization-engineered multiplication region," in IEEE Photonics Technology Letters, vol. 17, no. 8, pp. 1719-1721, Aug. 2005, doi: 10.1109/LPT.2005.851903.
4.19 N. Li, R. Sidhu, X. Li, F. Ma, S. Demiguel, X. Zhen, A. L. Holmes, Jr., J. C. Campbell, D. A. Tulchinsky, and K. J. Williams, “High-saturation-current InGaAs/InAlAs charge-compensated uni-traveling-carrier photodiode,” phys. stat. sol. (a), vol. 201, no. 13, pp. 3037-3041, Aug., 2004.
4.20 M. Nada, Y. Yamada and H. Matsuzaki, "Responsivity-Bandwidth Limit of Avalanche Photodiodes: Toward Future Ethernet Systems," IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-11, March-April 2018.
4.21 Y. L. Goh, J. S. Ng, C. H. Tan, W. K. Ng, and J. P. R. David, “Excess noise measurement in In0.53Ga0.47As,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2412–2414, Nov., 2005.
4.22 B. Shi, F. Qi, P. Cai, X. Chen, Z. He, Y. Duan, G. Hou, T. Su, S. Li, W. Chen, C. Hong, R.-Chen Yu and D. Pan., "106 Gb/s Normal-Incidence Ge/Si Avalanche Photodiode with High Sensitivity," 2020 Optical Fiber Communications Conference and Exhibition (OFC), 2020, pp. 1-3.
4.23 M. Nada, F. Nakajima, T. Yoshimatsu, Y. Nakanishi, A. Kanda, T. Shindo, S. Tatsumi, H. Matsuzaki and K. Sano, "Inverted p-down Design for High-Speed Photodetectors," Photonics 2021, 8, no. 2, 39. https://doi.org/10.3390/photonics8020039.
4.24 Naseem, Z. Ahmad, R.-L. Chao, H.-S. Chang, C.-J. Ni, H.-S. Chen, J. J.-S. Huang, E. Chou, Y.-H. Jan and J.-W. Shi, “The enhancement in speed and responsivity of uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers,” Optics Express, vol. 27, no. 11, pp. 15495-15504, May, 2019.
4.25 M. Nada, T. Yoshimatsu, F. Nakajima, K. Sano and H. Matsuzaki, "A 42-GHz Bandwidth Avalanche Photodiodes Based on III-V Compounds for 106-Gbit/s PAM4 Applications," J. Lightwave Technol., vol. 37, no. 2, pp. 260-265, Jan. 2019.
4.26 E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y. Tokuda, and T. Ishikawa, “Degradation Mode Analysis on Highly Reliable Guarding-Free Planar InAlAs Avalanche Photodiodes,” IEEE/OSA Journal of Lightwave Technology, vol. 25, no. 12, pp. 3686-3693, Dec., 2007.
4.27 H.-Y. Zhao, Naseem, A. H. Jones, R.-L. Chao, Z. Ahmad, J. C. Campbell, and J.-W. Shi, "High-Speed Avalanche Photodiodes with Wide Dynamic Range Performance," Journal of Lightwave Technology, vol. 37, no. 23, pp. 5945-5952, 1 Dec., 2019.
4.28 G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55 µm with a gain-bandwidth product of 320 GHz,” IEEE Photon. Tech. Lett., vol. 13, no. 8, pp. 842–844, Aug. 2001.

CHAPTER 5
5.1. S. Lee, X. Jin, H. Jung, H. Lewis, Y. Liu, B. Guo, S. H. Kodati, M. Schwartz, C. Grein, T. J. Ronningen, J. P. R. David, Joe. C. Campbell, and S. Krishna, "High gain, low noise 1550 nm GaAsSb/AlGaAsSb avalanche photodiodes," Optica 10, 147-154 (2023)
5.2. Y. Xiao, Z. Li, and Z. S. Li, “Modeling of InGaAs/AlGaAsSb APDs with high gain-bandwidth product,” Proc. SPIE 11498, 114980R (2020).
5.3. S. Xie, X. Zhou, S. Zhang, D. J. Thomson, X. Chen, G. T. Reed, J. S. Ng, and C. H. Tan, “InGaAs/AlGaAsSb avalanche photodiode with high gain bandwidth product,” Opt. Express 24, 24242–24247 (2016).
5.4. “Hamamatsu product datasheet: Si APD (S10341 series),” 2017, https://www.hamamatsu.com/resources/pdf/ssd/s10341_series_ kapd1030e.pdf.
指導教授 許晉瑋(JIN-WEI SHI) 審核日期 2023-4-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明