博碩士論文 109323028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.145.89.48
姓名 龔泰宇(Tai-Yu Gong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高壓高紊流貧油預混甲烷混氫或混氨之球狀火焰速度量測及其一般通式
(Measurements of Spherical Flame Speeds for Lean Premixed Methane Blending with Hydrogen or Ammonia under High-Pressure, High-Turbulence Conditions and Their General Correlations)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-12-31以後開放)
摘要(中) 本論文使用貧油預混甲烷,於固定當量比(equivalence ratio)條件下,加入體積比10、20、30%之氫氣或氨氣作為燃料,在初始壓力p = 1~5 atm、方均根紊流擾動速度u′ = 0 ~ 4.2 m/s下,量測其球狀火焰層流和紊流燃燒速度(SL和ST)。實驗在已建立之高溫高壓雙腔體三維十字型燃燒設備進行,透過設置於水平圓柱兩端之反向旋轉風扇及空孔板,在三維十字型燃燒室中心區域產生一近似等向性紊流場,並且搭配高速攝影機紀錄中央引燃往外傳播之球狀火焰,以獲得其火焰半徑之時序資料R(t),來估算其燃燒速度。實驗結果主要含三個部分: (1)在常壓下,探討紊流效應對加氫或加氨效應燃燒速度的影響。結果顯示,ST值會隨著氫氣混燒體積比的提升而增加,而氨氣混燒體積比的提升則會造成ST值的下降,且混氫或混氨ST值皆會隨著u′的提升而增加。(2)探討壓力效應(p = 1~5 atm)對於SL和ST之影響。結果顯示,在層流條件下,體積比10~30%氫氣或氨氣混燒之CH4/H2/air或CH4/NH3/air火焰速度變化為SL ~〖 p〗^(〖-n〗_(1 ) )或〖 p〗^(〖-n〗_(2 ) ),其中n1 = 0.52~0.55,而n2 = 0.29~0.36,兩者結果皆顯示SL隨著壓力增加而成一負冪次方下降。在紊流條件下,體積比10~30%氫氣或氨氣混燒之CH4/H2/air或CH4/NH3/air火焰速度變化為ST ~ p^(〖+n〗_3 )或〖 p〗^(〖+n〗_4 ),其中n3 = 0.04~0.16,而n4 = 0.06~0.18,結果顯示混氫或混氨ST皆會隨著壓力上升而成一正冪次方增加。(3)將量測到的SL及ST進行正規化分析,並加入有效Lewis數(Le)之考量,以比較目前文獻上常用五組不同一般通式之適用性。五個不同通式條列如下: (1) Kobayashi et al. (1998)所提出之"S" _"T,c̅=0.5" "/SL"=A[(u′〖/S〗_L)〖(p〖/p〗_0)]〗^B,其中p0為1 atm,A、B為透過實驗係數常數。(2) Bradley et al. (2005)所提出之"S" _"T,c̅=0.5" /u′=A〖[KLe]〗^B,其中下標c ̅為火焰平均傳遞變數、K = 0.25(u′/SL)2(ReT,flow)-0.5為紊流Karlovitz數,而ReT,flow = u′ LI / v ( LI為紊流積分長度和v為反應物運動黏滯係數)。(3) Chaudhuri et al. (2012)所提出之[(1/SLb)(d<R>/dt)] = A(ReT,flame)B,其中SLb為未經密度校正之生成物層流燃燒速度,而ReT,flame= (u′/SL)(<R>/L),其中<R>為平均火焰半徑,L為層流火焰厚度。(4) Shy et al. (2012)所提出之"S" _"T,c̅=0.5" "/" u′= A(Da)B,其中Da = (LI/u′)(SL/L)為紊流"Damk" "o" ̈"hler" 數。(5) Wang et al. (2020)所提出之"S" _"T,c̅=0.5" 〖"/S" 〗_"L" -"1"=A(〖"Re" 〗_"T,flame" 〖"Le" 〗^"-2" )^B。將本實驗所獲得之實驗數據考慮Le數為修正參數之函數後,代入前述五個一般通式後可以得到: (1) "S" _"T,c̅=0.5" "/SL"=2.97〖[(u′/S_L)(p/p_0)〖Le〗^(-1)]〗^0.43;(2) "S" _"T,c̅=0.5" /u′=1.04〖[KLe]〗^(-0.21);(3)〖" S" 〗_"T,c̅=0.5" "/SL"=0.39〖(〖Re〗_(T,flame) 〖Le〗^(-1))〗^0.5;(4)〖" (S" 〗_"T,c̅=0.5" "/u′ ")=0.26(Da〖"Le" 〗^"-1" )^"0.5" ;(5) "S" _"T,c̅=0.5" 〖"/S" 〗_"L" -"1"=0.14(〖"Re" 〗_"T,flame" 〖"Le" 〗^"-2" )^0.6。所有資料經Le數修正後,可將原先相同當量比但不同燃料之實驗數據耦合成單一曲線,使原本之一般通式在修正後可有更廣泛的通用性,結果顯示火焰傳播即使在不同燃料與當量比條件下,是具有自我傳播相似性。前述高壓預混紊流燃燒之研究成果,對燃氣渦輪機和鍋爐等燃燒設計和應用,應有所助益。
摘要(英) This thesis reports measurements of laminar and turbulent burning velocities (SL and ST) of lean premixed methane/air blending with 10-30 vol.% hydrogen and/or ammonia at a fixed equivalence ratio  over wide ranges of pressure p = 1~5 atmand r.m.s. turbulent fluctuation velocities u′ = 0~4.2 m/s. Experiments were conducted in an already-established high-pressure dual-chamber 3-D cruciform explosion facility, capable of generating near-isotropic turbulence. The radii of laminar and turbulent spherical flames as a function of time R(t) were recorded by a high-speed camera to determine their associated values of SL and ST. Three main parts of the results are as follows. (1) The effect of u′ on SL and ST of hydrogen and/or ammonia addition at 1 atm is discussed. Values of SL and ST increase with increasing hydrogen blending but decrease with increasing ammonia blending. All ST values increase with increasing u′. (2) The effect of pressure on SL and ST is explored. Results show that SL ~〖 p〗^(〖-n〗_1 ), where n1 = 0.52~0.55 for CH4/H2/air mixtures and n1 = 0.29~0.36 for CH4/NH3/air mixtures. But ST ~〖 p〗^(〖+n〗_2 ), where n2 = 0.04~0.16 for CH4/H2/air mixtures and n2 = 0.06~0.18 for CH4/NH3/air mixtures. (3) Using measured SL and "S" _"T,c̅=0.5" data, five general correlations commonly used in the literature with the consideration of Lewis number (Le) are tested, where the mean progress variablec ̅=0.5are selected. (1) A correlation of "S" _"T,c̅=0.5" "/SL"=A[(u′〖/S〗_L)〖(p〖/p〗_0)]〗^B proposed by Kobayashi et al. (1998), where p0 was 1 atm, and A and B were experimental coefficients. (2) A correlation of "S" _"T,c̅=0.5" /u′=A〖[KLe]〗^B proposed by Bradley et al. (2005), where the turbulent Karlovitz number K = 0.25(u′/SL)2(ReT,flow)-0.5, the flow turbulent Reynolds number ReT,flow = u′ LI / v, and LI and v are the turbulent integral length scale of turbulence and the kinematic viscosity of reactants. (3) A correlation of [(1/SLb)(d<R>/dt)] = A(ReT,flame)B proposed by Chaudhuri et al. (2012). SLb is the laminar burning velocity on the burned side before density correction. ReT,flame= (u′/SL)(<R>/L), where <R> is the average flame radius and L is the laminar flame thickness. (4) A correlation of "S" _"T,c̅=0.5" "/" u′= A(Da)B proposed by Shy et al. (2012), where the turbulent "Damk" "o" ̈"hler" number Da = (LI/u′)(SL/L). (5) A correlation of "S" _"T,c̅=0.5" /SL - 1 = 0.14(ReT,flameLe-2)0.6 proposed by Wang et al. (2020). Applying the present experimental data with the Le modification, these five general correlations are: (1) "S" _"T,c̅=0.5" "/SL"=2.97〖[(u′/S_L)(p/p_0)〖Le〗^(-1)]〗^0.43; (2) "S" _"T,c̅=0.5" /u′=1.04〖[KLe]〗^(-0.21); (3)〖" S" 〗_"T,c̅=0.5" "/SL"=0.39〖(〖Re〗_(T,flame) 〖Le〗^(-1))〗^0.5;(4)〖" (S" 〗_"T,c̅=0.5" "/u′ ")=0.26(Da〖"Le" 〗^"-1" )^"0.5" ; (5) "S" _"T,c̅=0.5" /SL - 1 = 0.14(ReT,flameLe-2)0.6. All five general correlations show that turbulent spherical flames are self-similar regardless of different  and fuels applied. These results should be useful to the combustion design and application of gas turbines and boilers.
關鍵字(中) ★ 甲烷、氫氣和氨氣
★ 預混球狀火焰
★ 壓力和紊流效應
★ 火焰速度量測
★ 一般通式
★ 火焰傳播自我相似性
關鍵字(英) ★ methane, hydrogen and ammonia
★ premixed spherical flame
★ pressure and turbulence effects
★ flame speed measurement
★ general correlations
★ self-similar flame propagation
論文目次 摘要 i
Abstract iv
誌謝 vii
目錄 viii
圖目錄 xi
表目錄 xv
符號說明 xvi
Greek Symbols xvii
第一章 前言 1
1.1研究動機 1
1.2探討問題 2
1.3解決方法 3
1.4論文架構 4
第二章 文獻回顧 5
2.1 火焰傳遞 5
2.2 加氫燃燒技術 5
2.3 加氨燃燒技術 6
2.4 壓力效應 8
2.4.1 壓力效應對層流燃燒速度之影響 8
2.4.2 壓力效應對紊流燃燒速度之影響 10
2.5 紊流燃燒速度之一般通式 12
2.5.1 Kobayashi團隊之正規化關係式 12
2.5.2 Bradley團隊之正規化關係式 13
2.5.3 Chaudhuri團隊之正規化關係式 14
2.5.4 Shy團隊之正規化關係式 16
2.5.5 Wang團隊之正規化關係式 17
第三章 實驗設備與方法 18
3.1 高溫高壓預混紊流燃燒設備 18
3.2 高速影像擷取系統 20
3.3 燃氣當量比(Equivalent ratio)計算 22
3.4 火焰傳遞速度 23
3.5 實驗流程 24
第四章 結果與討論 26
4.1 加氫、加氨及紊流效應對火焰速度之影響 27
4.1.1層流燃燒速度量測 27
4.1.2 甲烷加氫對層流燃燒速度之影響 28
4.1.3 甲烷加氨對層流燃燒速度之影響 29
4.1.4紊流燃燒速度量測 30
4.1.5紊流效應對甲烷加氫、加氨火焰速度之影響 32
4.2 壓力效應對層、紊流火焰速度之影響 33
4.2.1壓力效應對層流火焰速度之影響 33
4.2.2壓力效應對紊流火焰速度之影響 34
4.3 紊流燃燒速度之一般通式 36
4.3.1 Kobayashi團隊之ST一般通式 36
4.3.2 Bradley團隊之ST一般通式 38
4.3.3 Chaudhuri團隊之ST一般通式 39
4.3.4 Shy團隊之ST一般通式 40
4.3.5 Wang團隊之ST一般通式 41
第五章 結論與未來工作 47
5.1 結論 47
5.2 未來工作 48
參考文獻 49
附錄一 55
附錄一參考文獻 59
參考文獻 [1] Net Zero by 2050, International Energy Agency, Paris (2021), https://www.iea.org/reports/net-zero-by-2050.
[2] 台電系統歷年發購, https://www.taipower.com.tw/tc/chart_m/a01_電力供需資訊_電源開發規劃_歷年發購電量及結構.html.
[3] 董益銍,淨煤氣化合成氣貧油可燃極限與燃燒速度量測: 壓力和紊流效應,國立中央大學機械工程研究所,碩士論文,2012年6月。
[4] 陳聖鶴,高壓貧油預混氫氣紊流燃燒速度量測和正規化及其與不同碳氫燃料之比較,國立中央大學機械工程研究所,碩士論文,2016年1月。
[5] 蔣龍杰,高壓預混紊流燃燒: 最小引燃能量與紊流燃燒速度量測,國立中央大學機械工程研究所,博士論文,2017年6月。
[6] 于德維,高溫高壓預混異辛烷火焰之層流與紊流燃燒速度量測與正規化分析,國立中央大學機械工程研究所,碩士論文,2017年12月。
[7] 陳鈞彥,高溫高壓預混異辛烷層紊流燃燒速度量測及其一般通式含Lewis數之考量,國立中央大學機械工程研究所,碩士論文,2018年11月。
[8] 林彥廷,高溫高壓汽油主要參考燃料層流和紊流燃燒速度量測與正規化分析,國立中央大學機械工程研究所,碩士論文,2019年11月。
[9] 莊迪元,高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析,國立中央大學機械工程研究所,碩士論文,2020年1月。
[10] 伊莎蕊,高壓高溫甲苯汽油替代燃料與乙醇混合物之層紊流燃燒速度和廢氣排放量測,國立中央大學機械工程研究所,碩士論文,2021年1月。
[11] Siemens white paper, Hydrogen power with Siemens gas turbines, April 2020.
[12] One extra reference NIST chemistry webbook, SRD 69, thermophysical properties of fluid systems, National Institute of Standard and Technology, available at https://webbook.nist.gov/chemistry/fluid/.
[13] 台灣中油股份有限公司, https://www.cpc.com.tw/cp.aspx?n=204&fbclid=IwAR3eMnhmAbav6TeYOUvq-N0BDANh3ihAezJxJg6y2kzdXdzVko6irw3_Ujk.
[14] D. Bradley, T.M. Cresswell, J.S. Puttock, Flame acceleration due to flame-induced instabilities in large-scale explosions, Combust. Flame 124 (2001) 551-559.
[15] T. Kitagawa, T. Ogawa, Y. Nagano, Effects of pressure on unstretched laminar burning velocity, Markstein length and cellularity of spherically propagating laminar flames, Trans. Jpn. Soc. Mech. Eng. 70 (2004) 2197-2204.
[16] W.K. Kim, T. Mogi, K. Kuwana, R. Dobashi, Self-similar propagation of expanding spherical flames in large scale gas explosions, Proc. Combust. Inst. 35 (2015) 2051-2058.
[17] H. Ishaq, I. Dincer, C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities, Int. J. Hydrog. Energy 47 (2022) 26238-26264.
[18] Y. Yang, L. Tong, S. Yin, Y. Liu, L. Wang, Y. Qiu, Y. Ding, Status and challenges of applications and industry chain technologies of hydrogen in the context of carbon neutrality, J. Clean. Prod. 376 (2022) 134347.
[19] Z. Chen, P. Dai, S. Chen, A model for the laminar flame speed of binary fuel blends and its application to methane/hydrogen mixtures, Int. J. Hydrog. Energy 37 (2012) 10390-10396.
[20] M. Klell, H. Eichlseder, M. Sartory, Mixtures of hydrogen and methane in the internal combustion engine - Synergies, potential and regulations, Int. J. Hydrog. Energy 37 (2012) 11531-11540.
[21] J.S. Kim, J. Park, D.S. Bae, T.M. Vu, J.S. Ha, T.K. Kim, A study on methane-air premixed flames interacting with syngas-air premixed flames, Int. J. Hydrog. Energy 35 (2010) 1390-1400.
[22] Y. Lyu, P. Qiu, L. Liu, C. Yang, S. Sun, Effects of steam dilution on laminar flame speeds of H2/air/H2O mixtures at atmospheric and elevated pressures, Int. J. Hydrog. Energy 43 (2018) 7538-7549.
[23] S. Zhou, J. Gao, Z. Luo, S. Hu, L. Wang, T. Wang, Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism, Energy 239 (2022) 122218.
[24] E. Hu, Z. Huang, J. He, C. Jin, J. Zheng, Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames, Int. J. Hydrog. Energy 34 (2009) 4876-4888.
[25] E.C. Okafor, A. Hayakawa, Y. Nagano, T. Kitagawa, Effects of hydrogen concentration on premixed laminar flames of hydrogen-methane-air, Int. J. Hydrog. Energy 39 (2014) 2409-2417.
[26] F. Halter, C. Chauveau, N. Djebaı¨li-Chaumeix, I. Go¨kalp, Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixtures, Proc. Combust. Inst. 30 (2005) 201-208.
[27] H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37 (2019) 109-133.
[28] C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino, C. Mounaïm-Rousselle, Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures, Fuel 263 (2020) 116653.
[29] A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D.K. Somarathne, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures, Int. J. Hydrog. Energy 40 (2015) 9570-9578.
[30] J.H. Lee, S.I. Lee, O.C. Kwon, Effects of ammonia substitution on hydrogen/air flame propagation and emissions, Int. J. Hydrog. Energy 35 (2010) 11332-11341.
[31] G.J. Gotama, A. Hayakawa, E.C. Okafor, R. Kanoshima, M. Hayashi, T. Kudo, H. Kobayashi, Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames, Combust. Flame 236 (2022) 111753.
[32] E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism, Combust. Flame 204 (2019) 162-175.
[33] A. Ichikawa, Y. Naito, A. Hayakawa, T. Kudo, H. Kobayashi, Burning velocity and flame structure of CH4/NH3/air turbulent premixed flames at high pressure, Int. J. Hydrog. Energy 44 (2019) 6991-6999.
[34] T. Shu, Y. Xue, Z. Zhou, Z. Ren, An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames, Fuel 290 (2021) 120003.
[35] S. Zhou, W. Yang, H. Tan, Q. An, J. Wang, H. Dai, X. Wang, X. Wang, S. Deng, Experimental and kinetic modeling study on NH3/syngas/air and NH3/bio-syngas/air premixed laminar flames at elevated temperature, Combust. Flame 233 (2021) 111594.
[36] O. Kurata, N. Iki, T. Matsunuma, T. Inoue, T. Tsujimura, H. Furutani, H. Kobayashi, A. Hayakawa, Performances and emission characteristics of NH3-air and NH3-CH4-air combustion gas-turbine power generations, Proc. Combust. Inst. 36 (2017) 3351-3359.
[37] C.K. Law, Combustion Physics, Cambridge University Press, 2006.
[38] E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames, Combust. Flame 187 (2018) 185-198.
[39] P.F. Henshaw, T. D’Andrea, K.R.C. Mann, D.S.K. Ting, Premixed ammonia-methane-air combustion, Combust. Sci. Technol. 177 (2005) 2151-2170.
[40] X. Han, Z. Wang, M. Costa, Z. Sun, Y. He, K. Cen, Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3 /H2/air, NH3/CO/air and NH3/CH4/air premixed flames, Combust. Flame 206 (2019) 214-226.
[41] H. Xiao, A. Valera-Medina, P.J. Bowen, Study on premixed combustion characteristics of co-firing ammonia/methane fuels, Energy 140 (2017) 125-135.
[42] I. Glassman, Combustion, Third Ed., Academic Press, San Diego City, 1996.
[43] O.C. Kwon, G. Rozenchan, C.K. Law, Cellular instabilities and self-acceleration of outwardly propagation spherical flames, Proc. Combust. Inst. 29 (2002) 1775-1783.
[44] C.C. Liu, S.S. Shy, H.C. Chen, M.W. Peng, On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure, Proc. Combust. Inst. 33 (2011) 1293-1299.
[45] H. Dai, J. Wang, X. Cai, S. Su, H. Zhao, Z. Huang, Measurement and scaling of turbulent burning velocity of ammonia/methane/air propagating spherical flames at elevated pressure, Combust. Flame 242 (2022) 112183.
[46] H. Kobayashi, Y. Kawabata, K. Maruta, Experimental study on general correlation of turbulent burning velocity at high pressure, Proc. Combust. Inst. 27 (1998) 941-948.
[47] H. Kobayashi, T. Tamura, K. Maruta, T. Niioka, Burning velocity of turbulent premixed flames in a high-pressure environment, Proc. Combust. Inst. 26 (1996) 389.
[48] D. Bradley, P.H. Gaskell, X.J. Gu, A. Sedaghat, Premixed flamelet modelling: Factors influencing the turbulent heat release rate source term and the turbulent burning velocity, Combust. Flame 143 (2005) 227-245.
[49] S. Chaudhuri, F. Wu, D. Zhu, C.K. Law, Flame speed and self-similar propagation of expanding turbulent premixed flames, Phys. Rev. Lett. 108 (2012) 044503.
[50] S. Chaudhuri, V. Akkerman, C.K. Law, Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability, Phys. Rev. Lett. 84 (2011) 026322.
[51] H. Kobayashi, K. Seyama, H. Hagiwara, Y. Ogami, Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature, Proc. Combust. Inst. 30 (2005) 827-834.
[52] C.C. Liu, S.S. Shy, M.W. Peng, C.W. Chiu, Y.C. Dong, High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers, Combust. Flame 159 (2012) 2608-2619.
[53] M.T. Nguyen, D.W. Yu, S.S. Shy, General correlations of high pressure turbulent burning velocities with the consideration of Lewis number effect, Combust. Flame 37 (2019) 2391-2398.
[54] X. Cai, J. Wang, Z. Bian, H. Zhao, M. Zhang, Z. Huang, Self-similar propagation and turbulent burning velocity of CH4/H2/air expanding flames: Effect of Lewis number, Combust. Flame 212 (2020) 1-12.
[55] S.S. Shy, C.C. Liu, W.T. Shih, Ignition transition in turbulent premixed combustion, Combust. Flame 157 (2010) 341-350.
[56] S.S. Shy, W.J. Lin, J.C. Wei, An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion, Proc. R. Soc. Lond. A 456 (2000) 1997-2019.
[57] T.S. Yang, S.S. Shy, Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements, J. Fluid Mech. 526 (2005) 171-216.
[58] 石泰光,壓力效應對奈秒重覆脈衝放電引燃機率之影響,國立中央大學機械工程研究所,碩士論文,2022年1月。
[59] D. Bradley, M. Lawes, M.S. Mansour, Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2 MPa, Combust. Flame 158 (2011) 123-138.
[60] G. Damköhler, Z. Elektrchem, The effect of turbulent on the flame velocity in gas mixtures, English translation, NACA Tech. Memo. No. 1112 (1947) 601-652.
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2022-12-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明