博碩士論文 109323055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.222.164.93
姓名 李宗霖(Tsung-Lin Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究
(Study on nasopharyngeal carcinoma circular tumor cell biosensor based on graphene field effect transistor)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究
★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容
★ 懸空石墨烯之特性研究與應用★ 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用化學氣相沉積法
(Chemical Vapor Deposition, CVD)製備大面積石墨烯,
並用濕式轉印法疊加雙層石墨烯至二氧化矽基板,製作平面閘極石墨烯場效電晶體 微架
構的 生醫感測器,接著利用低損傷 氮 電漿對石墨烯進行共價功能化 改質 ,以利後續接上
抗體 實現 鼻咽癌循環腫瘤細胞的 無標記檢測 並 透過 電晶體的 電性 上 之 狄拉克點的訊
號變化 量來判斷檢測物之濃度。其優勢為相較於醫學上的檢測方法如 :核磁共振、電腦斷
層與 聚合酶連鎖反應 石墨烯場效電晶體生醫感測器在感測時間、單位晶片成本與儀器
成本都更低。 本研究選擇鼻咽癌循環腫瘤細胞作為感測標的物,利用其細胞膜上的上表
皮細胞黏附分子進行細胞的捕捉與感測。
研究結果
顯示 低損傷氮電漿成功的使石墨烯表面胺化,後續進行的 X射線光電子能
譜 分析顯示氮的原子比 由原本的 1.07%提升到 且分峰後的結果顯示氮鍵結組成
中的 C-NH2鍵 約占 並以螢光顯微鏡初步對胺化石墨烯分析,結果顯示胺化石墨
烯接上的抗 體數量大於普通石墨烯。本研究所製作的 感測器 的 線性檢測範圍為 1 cell/15  l到 1000 cell/15  l 檢測極限 (LoD)為 1 cell/15  l 並且其靈敏度可達 -0.040 V /decade
線性回歸度 (R2)達 0.93,並且在後續的 專一性 測試中表現出了高度的 專一性 。同時也利
用電子顯微鏡觀察捕捉細胞後的石墨烯表面,並計算出其捕捉密度為 238.6 ± 29.8 cell/mm2。 本研究可提供未來 針對鼻咽癌循環腫瘤細胞 快速且 高可靠度之 精準檢 測,可
用來作為鼻咽癌早期發現與治療後後續追蹤的平台。
摘要(英) In this study, a planar gate graphene field effect transistor biomedical sensor was fabricated by using large area CVD graphene and transferred to SiO2 substrate by wet etching method. Graphene is covalently functionalized by the low damage plasma to facilitate subsequent binding of antibodies to achieve label-free detection of circulating tumor cells of nasopharyngeal carcinoma. Compared with more conventional detection methods such as magnetic resonance imaging (MRI), computed tomography (CT) and polymerase chain reaction (PCR), the graphene field effect transistor biomedical sensor is lower in unit cost, instrument cost and the sensing time is shorter. Circulating tumor cells(CTC) is selected as the target. Epidermal cell adhesion molecules on the cell membrane were used in the capturing and sensing of CTC
The results showed that the low-damage nitrogen plasma successfully functionalize the graphene surface. Subsequent X-ray photoelectron spectroscopy (XPS) analysis showed that the atomic ratio of nitrogen increased from 1.07% to 3.17%, and the results after fitting showed that com position of C-NH2 bond in the nitrogen related bond is about 62.8%. Fluorescence microscope shows that the number of antibodies attached to the functionalized graphene is greater than that of pristine graphene. In testing, our biosensors revealed high selectivity and limit of detection receive 1 cell/15  l, the detection linear range at 1 cell/15  l to 1000 cell/15  l (R2=0.93) and sensitivity can reach -0.040 V /decade, shows high reliability and characteristic. Moreover, we used the scanning electron microscope (SEM) to observe the surface of graphene after capturing of CTC and the capture rate was at 238.6±29.8 cell/mm2. Our biosensors accurately detect nasopharyngeal carcinoma circular tumor cell rapidly and highly reliable, and can be used as a platform for early detection of nasopharyngeal carcinoma and post treatment monitoring.
關鍵字(中) ★ 石墨烯
★ 場效電晶體
★ 鼻咽癌
★ 循環腫瘤細胞
★ 生醫感測器
關鍵字(英) ★ Graphene
★ Field effect transistor
★ Nasopharyngeal carcinoma
★ Circulating tumor cell
★ Biosensor
論文目次 目錄
學位論文授權書
i
摘要
ii
Abstract iii
致謝
iv
目錄
v
圖目錄
viii
表目錄
x
第一章、
緒論 1
第二章、
文獻回顧 2
2-1 石墨烯簡介 2
2-1-1 石墨烯合成方法 3
2-2 癌症 5
2-2-1 鼻咽癌 (Nasopharyngeal Carcinoma, 6
2-2-2 Epstein-Barr Virus (EBV) 7
2-2-3 循環腫瘤細胞 (Circulating Tumor Cell, CTC) 8
2-2-4 傳統檢測方法 9
2-3 生醫感測器 9
2-3-1 電化學生醫感測器 9
2-3-2 螢光式生醫感測器 10
2-3-3 石墨烯場效電晶體生醫感測器 (Graphene field effect transistor biosensor, GFET biosensor) 12
2-3-3-1 背閘極石墨烯場效電晶體 (Back-gate GFET) 13
2-3-3-2 液體閘極石墨烯場效電晶體 (Liquid gate GFET) 14
2-3-3-3 平面閘極石墨烯場效電晶體 (Planar gate GFET) 15
2-3-3-4 費米能階費米能階 (Fermi level) .......................................................................................................................................... 16
2-3-3-5 電中性點電中性點 (Charge neutral point, CNP) .......................................................................................... 17
2-3-3-6 德拜長度德拜長度 (Debye length) .................................................................................................................................... 17
2-4 石墨烯之功能化石墨烯之功能化 .............................................................................................................................................................................................................. 18
2-4-1 共價功能化共價功能化 ...................................................................................................................................................................................................... 19
2-4-2 非共價功能化非共價功能化 .............................................................................................................................................................................................. 20
2-5 研究動機與目的研究動機與目的 .............................................................................................................................................................................................................. 21
第三章、
第三章、 實驗方法、流程與機台介紹實驗方法、流程與機台介紹 ................................................................................................................................................................ 22
3-1 石墨烯生醫感測元件製作流程石墨烯生醫感測元件製作流程 .............................................................................................................................................................. 22
3-1-1 常壓化學氣相沉積法製備石墨烯常壓化學氣相沉積法製備石墨烯 .............................................................................................................................. 22
3-1-2 石墨烯濕式蝕刻轉印法疊加轉印雙層石墨烯石墨烯濕式蝕刻轉印法疊加轉印雙層石墨烯 ...................................................................................... 23
3-1-3 元件電極製作元件電極製作 .............................................................................................................................................................................................. 24
3-2 石墨烯胺化改質石墨烯胺化改質 .............................................................................................................................................................................................................. 25
3-3 元件量測流程元件量測流程 ...................................................................................................................................................................................................................... 26
3-4 SEM試片製備流程試片製備流程 ...................................................................................................................................................................................................... 28
3-5 實驗藥品與材料實驗藥品與材料 .............................................................................................................................................................................................................. 28
3-6 實驗器材實驗器材 ...................................................................................................................................................................................................................................... 29
3-6-1 常壓化學氣象沉積系統常壓化學氣象沉積系統 (Atmospheric pressure chemical vapor deposition system, APCVD system) .................................................................................................................................................................................... 29
3-6-2 旋轉塗佈機旋轉塗佈機 (Spin coater) .......................................................................................................................................................... 30
3-6-3 拉曼光譜儀拉曼光譜儀 (Raman spectroscopy) ............................................................................................................................ 30
3-6-4 曝光機曝光機 (Mask aligner) .................................................................................................................................................................... 31
3-6-5 氧電漿系統氧電漿系統 (Oxygen plasma system) .................................................................................................................... 31
3-6-6 電子束蒸鍍機電子束蒸鍍機 (E-gun evaporator) .............................................................................................................................. 31
3-6-7 低損傷電漿系統低損傷電漿系統 (Low damage plasma system, LDPS) ............................................................ 32
3-6-8 半導體直流電半導體直流電性量測系統性量測系統 (I-V system) .......................................................................................................... 32
vii
3-6-9 X射線光電子能譜儀射線光電子能譜儀 (X-ray Photoelectron Spectroscope, XPS) ................................ 32
3-6-10 掃描式電子顯微鏡掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) .......................................... 33
3-6-11 超臨界點乾燥機超臨界點乾燥機 (Critical point dryer) ............................................................................................................ 33
第四章、
第四章、 結果與討論結果與討論 ........................................................................................................................................................................................................................ 34
4-1 石墨烯特性分析石墨烯特性分析 .............................................................................................................................................................................................................. 34
4-2 石墨烯場效電晶體特性分析石墨烯場效電晶體特性分析 ...................................................................................................................................................................... 35
4-3 胺化石墨烯之胺化石墨烯之XPS分析分析 .................................................................................................................................................................................. 36
4-4 螢光顯微鏡用於確認抗體於石墨烯表面螢光顯微鏡用於確認抗體於石墨烯表面 .............................................................................................................................. 38
4-5 CTC捕捉對於元件轉移特性曲線之影響捕捉對於元件轉移特性曲線之影響 .............................................................................................................................. 39
4-6 元件之專一性分析元件之專一性分析 ...................................................................................................................................................................................................... 41
4-7 電子顯微鏡用於確認電子顯微鏡用於確認CTC捕捉捕捉 .......................................................................................................................................................... 45
第五章、
第五章、 結論結論 ................................................................................................................................................................................................................................................ 47
第六章、
第六章、 未來工作未來工作 ................................................................................................................................................................................................................................ 48
參考文獻
參考文獻 .................................................................................................................................................................................................................................................................... 49
參考文獻 [1] D. Tyagi et al., "Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications," Nanoscale, vol. 12, no. 6, pp. 3535-3559, 2020.
[2] X. Tang et al., "Chemically deposited palladium nanoparticles on graphene for hydrogen sensor applications," Scientific reports, vol. 9, no. 1, pp. 1-11, 2019.
[3] Y.-C. Syu, W.-E. Hsu, and C.-T. Lin, "Field-effect transistor biosensing: Devices and clinical applications," ECS Journal of Solid State Science and Technology, vol. 7, no. 7, p. Q3196, 2018.
[4] C. Andronescu and W. Schuhmann, "Graphene-based field effect transistors as biosensors," Current Opinion in Electrochemistry, vol. 3, no. 1, pp. 11-17, 2017.
[5] M. S. Mannoor et al., "Graphene-based wireless bacteria detection on tooth enamel," Nature communications, vol. 3, no. 1, pp. 1-9, 2012.
[6] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature materials, vol. 6, no. 3, pp. 183-191, 2007.
[7] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004.
[8] L. Dai, D. W. Chang, J. B. Baek, and W. Lu, "Carbon nanomaterials for advanced energy conversion and storage," small, vol. 8, no. 8, pp. 1130-1166, 2012.
[9] R. R. Nair et al., "Fine structure constant defines visual transparency of graphene," science, vol. 320, no. 5881, pp. 1308-1308, 2008.
[10] V.-M. Hiltunen et al., "Ultrastiff graphene," npj 2D Materials and Applications, vol. 5, no. 1, pp. 1-7, 2021.
[11] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," science, vol. 321, no. 5887, pp. 385-388, 2008.
[12] A. A. Balandin et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, no. 3, pp. 902-907, 2008.
[13] X. Li et al., "Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper," Journal of the American Chemical Society, vol. 133, no. 9, pp. 2816-2819, 2011.
[14] M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, "Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure," Physical Chemistry Chemical Physics, vol. 13, no. 46, pp. 20836-20843, 2011.
[15] M. Yi and Z. Shen, "A review on mechanical exfoliation for the scalable production of graphene," Journal of Materials Chemistry A, vol. 3, no. 22, pp. 11700-11715, 2015.
[16] Y. Xu, H. Cao, Y. Xue, B. Li, and W. Cai, "Liquid-phase exfoliation of graphene: anoverview on exfoliation media, techniques, and challenges," Nanomaterials, vol. 8, no. 11, p. 942, 2018.
[17] R. Munoz and C. Gómez‐Aleixandre, "Review of CVD synthesis of graphene," Chemical Vapor Deposition, vol. 19, no. 10-11-12, pp. 297-322, 2013.
[18] S. Thakur and N. Karak, "Alternative methods and nature-based reagents for the reduction of graphene oxide: A review," Carbon, vol. 94, pp. 224-242, 2015.
[19] Y.-P. Chen, A. T. Chan, Q.-T. Le, P. Blanchard, Y. Sun, and J. Ma, "Nasopharyngeal carcinoma," The Lancet, vol. 394, no. 10192, pp. 64-80, 2019.
[20] W. C.-s. Cho, "Nasopharyngeal carcinoma: molecular biomarker discovery and progress," Molecular cancer, vol. 6, no. 1, pp. 1-9, 2007.
[21] J. J. Lu, J. S. Cooper, and A. W. Lee, Nasopharyngeal cancer: multidisciplinary management. Springer Science & Business Media, 2010.
[22] J. I. Cohen, "Epstein–Barr virus infection," New England journal of medicine, vol. 343, no. 7, pp. 481-492, 2000.
[23] L. Keller and K. Pantel, "Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells," Nature Reviews Cancer, vol. 19, no. 10, pp. 553-567, 2019.
[24] R. Rakhi, P. Nayak, C. Xia, and H. N. Alshareef, "Novel amperometric glucose biosensor based on MXene nanocomposite," Scientific reports, vol. 6, no. 1, pp. 1-10, 2016.
[25] R. Singh, S. Hong, and J. Jang, "Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform," Scientific reports, vol. 7, no. 1, pp. 1-11, 2017.
[26] M. Mohammadniaei et al., "Electrochemical Biosensor Composed of Silver Ion‐Mediated dsDNA on Au‐Encapsulated Bi2Se3 Nanoparticles for the Detection of H2O2 Released from Breast Cancer Cells," Small, vol. 14, no. 16, p. 1703970, 2018.
[27] A. B. Hashkavayi, J. B. Raoof, R. Ojani, and S. Kavoosian, "Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells," Biosensors and Bioelectronics, vol. 92, pp. 630-637, 2017.
[28] M. Ç. Canbaz, Ç. S. Şimşek, and M. K. Sezgintürk, "Electrochemical biosensor based on self-assembled monolayers modified with gold nanoparticles for detection of HER-3," Analytica Chimica Acta, vol. 814, pp. 31-38, 2014.
[29] C. Ibau, M. M. Arshad, S. C. Gopinath, M. Nuzaihan, M. Fathil, and P. Estrela, "Gold interdigitated triple-microelectrodes for label-free prognosticative aptasensing of prostate cancer biomarker in serum," Biosensors and Bioelectronics, vol. 136, pp. 118-127, 2019.
[30] W. Shi et al., "Magnetic particles assisted capture and release of rare circulating tumor cells using wavy-herringbone structured microfluidic devices," Lab on a Chip, vol. 17, no. 19, pp. 3291-3299, 2017.
[31] T. K. Mandal, Y. R. Lee, and N. Parvin, "Red phosphorus decorated graphene oxide nanosheets: label-free DNA detection," Biomaterials science, vol. 8, no. 1, pp. 125-131, 2020.
[32] B. Zhan, C. Li, J. Yang, G. Jenkins, W. Huang, and X. Dong, "Graphene field‐effect transistor and its application for electronic sensing," Small, vol. 10, no. 20, pp. 4042-4065, 2014.
[33] A. Béraud, M. Sauvage, C. M. Bazán, M. Tie, A. Bencherif, and D. Bouilly, "Graphene field-effect transistors as bioanalytical sensors: design, operation and performance," Analyst, vol. 146, no. 2, pp. 403-428, 2021.
[34] D. Kwong Hong Tsang et al., "Chemically functionalised graphene FET biosensor for the label-free sensing of exosomes," Scientific reports, vol. 9, no. 1, pp. 1-10, 2019.
[35] E. Danielson et al., "Graphene based field-effect transistor biosensors functionalized using gas-phase synthesized gold nanoparticles," Sensors and Actuators B: Chemical, vol. 320, p. 128432, 2020.
[36] F. Chen, Q. Qing, J. Xia, J. Li, and N. Tao, "Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution," Journal of the American Chemical Society, vol. 131, no. 29, pp. 9908-9909, 2009.
[37] S. Hu, Z. Wang, Y. Gu, Y. Li, and Y. Jia, "Clinical available circulating tumor cell assay based on tetra (4-aminophenyl) porphyrin mediated reduced graphene oxide field effect transistor," Electrochimica Acta, vol. 313, pp. 415-422, 2019.
[38] D. Han, R. Chand, and Y.-S. Kim, "Microscale loop-mediated isothermal amplification of viral DNA with real-time monitoring on solution-gated graphene FET microchip," Biosensors and Bioelectronics, vol. 93, pp. 220-225, 2017.
[39] B. Guo, L. Fang, B. Zhang, and J. R. Gong, "Graphene doping: a review," Insciences J., vol. 1, no. 2, pp. 80-89, 2011.
[40] S. Sarkar, E. Bekyarova, and R. C. Haddon, "Chemistry at the Dirac point: Diels–Alder reactivity of graphene," Accounts of chemical research, vol. 45, no. 4, pp. 673-682, 2012.
[41] D. Reddy, L. F. Register, G. D. Carpenter, and S. K. Banerjee, "Graphene field-effect transistors," Journal of Physics D: Applied Physics, vol. 44, no. 31, p. 313001, 2011.
[42] E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, "Importance of the Debye screening length on nanowire field effect transistor sensors," Nano letters, vol. 7, no. 11, pp. 3405-3409, 2007.
[43] K.-I. Chen, B.-R. Li, and Y.-T. Chen, "Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation," Nano today, vol. 6, no. 2, pp. 131-154, 2011.
[44] X. Zhang et al., "Ultrasensitive field‐effect biosensors enabled by the unique electronic properties of graphene," Small, vol. 16, no. 15, p. 1902820, 2020.
[45] K. I. Ho et al., "A self‐aligned high‐mobility graphene transistor: decoupling thechannel with fluorographene to reduce scattering," Advanced Materials, vol. 27, no. 41, pp. 6519-6525, 2015.
[46] Y. Hu et al., "Amino‐functionalization of graphene sheets and the fabrication of their nanocomposites," Polymer composites, vol. 31, no. 12, pp. 1987-1994, 2010.
[47] T. Saito, M. Tabata, A. Isobayashi, H. Miki, Y. Miyahara, and Y. Sugizaki, "Wafer-scalable chemical modification of amino groups on graphene biosensors," Langmuir, vol. 37, no. 16, pp. 4997-5004, 2021.
[48] C.-H. Huang et al., "Dual-Gate Enhancement of the Sensitivity of miRNA Detection of a Solution-Gated Field-Effect Transistor Featuring a Graphene Oxide/Graphene Layered Structure," ACS Applied Electronic Materials, vol. 3, no. 10, pp. 4300-4307, 2021.
[49] S.-R. Guo et al., "Label free DNA detection using large area graphene based field effect transistor biosensors," Journal of nanoscience and nanotechnology, vol. 11, no. 6, pp. 5258-5263, 2011.
[50] E. Fernandes et al., "Functionalization of single-layer graphene for immunoassays," Applied Surface Science, vol. 480, pp. 709-716, 2019.
[51] S. Xu et al., "Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor," Nature communications, vol. 8, no. 1, pp. 1-10, 2017.
[52] Q. Bao et al., "Graphene–polymer nanofiber membrane for ultrafast photonics," Advanced functional materials, vol. 20, no. 5, pp. 782-791, 2010.
[53] L. Sun et al., "Chemical vapour deposition," Nature Reviews Methods Primers, vol. 1, no. 1, pp. 1-20, 2021.
[54] L. Malard, M. A. Pimenta, G. Dresselhaus, and M. Dresselhaus, "Raman spectroscopy in graphene," Physics reports, vol. 473, no. 5-6, pp. 51-87, 2009.
[55] C.-H. Huang, C.-Y. Su, C.-S. Lai, Y.-C. Li, and S. Samukawa, "Ultra-low-damage radical treatment for the highly controllable oxidation of large-scale graphene sheets," Carbon, vol. 73, pp. 244-251, 2014.
[56] J. Ederer et al., "Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation," RSC advances, vol. 7, no. 21, pp. 12464-12473, 2017.
[57] J. W. Ma et al., "Carrier mobility enhancement of tensile strained Si and SiGe nanowires via surface defect engineering," Nano letters, vol. 15, no. 11, pp. 7204-7210, 2015.
[58] J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, "Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy," Nano letters, vol. 11, no. 1, pp. 209-213, 2011.
[59] S. Ryu et al., "Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate," Nano letters, vol. 10, no. 12, pp. 4944-4951, 2010.
[60] https://www.mohw.gov.tw/
[61] https://gco.iarc.fr/today/home
[62] 簡辰融 ,《 化學氣相沉積法製備雙層石墨烯應用於化學電阻式生物感測器之 研
究 》 碩士論文, 明志科技大學材料工程研究所 2021。
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2022-12-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明