博碩士論文 108323614 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.22.51.241
姓名 梅文勝(Mai Van Tinh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 層、紊流預混球狀火焰使用傳統和奈秒重覆脈衝之單/雙火花引燃比較
(Comparisons of Single- and Dual-channel Sparks Using Conventional and Nanosecond Repetition Pulse Discharges for Laminar and Turbulent Premixed Spherical Flames)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此論文透過單和雙通道式放電,實驗研究層流和紊流預混球狀火焰的引燃問題。使用傳統火花放電(CSSD,以字母C代表)和奈秒重複脈衝放電(NRPD,以字母N代表)兩種引燃系統,進行引燃能力的比較。所有的電極探針以端面為平面之不鏽鋼製成,其直徑為1 mm。有關雙通道式放電配置,由兩支間距為
2.6 mm的平行陽極電極和一支置於兩陽極電極中間對面且在同一垂直平面上的陰極所組成,此配置能夠形成兩個空間上分離且時間上同步的引燃通道。實驗使用當量比 = 0.7,且有效路易斯數Le  2.2 ≫ 1的貧油正丁烷/空氣混合燃氣,在一雙腔體等溫等壓風扇擾動爆炸設備中進行,此設備可產生一近似等向性紊流場,本研究採用一範圍之均方根紊流擾動速度(u = 0-4.9 m/s)來進行實驗,其平均流速可忽略不計。對於dgap = 0.8 mm的單通道和雙通道的傳統火花電極配置(CS-0.8和CD-0.8-0對應CS-dgap和CD-dgap-L,其中L為陽極和陰極電極端面間之橫向距離於同一垂直平面)。我們發現在靜止流場時,CS-0.8和CD-0.8-0具有相同的引燃特性,這可以從50%引燃機率之相同層流最小引燃能量(MIEL 
18 mJ)、臨界火焰半徑(Rc  3.7 mm)以及初始火核發展延遲時間(delay  11.3 ms)看出。在不同的dgap 值,NS-dgap使用9個序列脈衝,ND-dgap-L則使用6個序列脈衝,來達到與CS-0.8和CD-0.8-0具有相同的引燃能量Etot  18 mJ  MIEL,其中除NS和ND第一個脈衝有相同的引燃能量Eig,1st  0.8 mJ,NS每個脈衝引燃能量Eig  2.2 mJ,而ND每個脈衝引燃能量Eig  3.3 mJ,且NS與ND配置之引燃能量不受dgap和重複脈衝頻率(PRF)所影響。層流與紊流之引燃機率(Pig,L 和 Pig,T)在PRF = 1-100 kHz和u = 0-4.9 m/s之條件進行量測。我們發現ND-0.8-0之配置,在所有PRF值,其Pig,L = 0%,這與普遍認知的引燃火核越大,Pig,L值越高的觀點不同。但在NS-0.8之條件,在PRF = 40 kHz時,會出現加成效應,歸因於因PRF與向內流動之反應物迴流頻率(fRC)耦合,其Pig,L = 58% > 50%,使用相同Etot  MIEL(CS-0.8)  18 mJ作比較。但當dgap = 2.0 mm則有相反結果,在
PRFs = 1-5 kHz時,Pig,L(ND) > Pig,L(NS);在PRFs = 10-100 kHz,則Pig,L(ND) = Pig,L(NS) = 100%。對於PRF = 40 kHz和dgap = 2.0 mm之紊流條件,顯著地觀察到有三個引燃區域具有截然不同的Pig,T:(I) 當u < 1 m/s時,Pig,T(ND) = Pig,T(NS) = 100%;(II) 當1 m/s < u < 4 m/s時,Pig,T(ND) > Pig,T(NS),顯示ND配置具有引燃增強效果;(III) 當u > 4.2 m/s時,則Pig,T(ND) = Pig,T(NS) = 0%。與NS-2.0和/或ND-2.0-1.8之配置相比,ND 配置的dgap進一步增加到2.8 mm會使Pig,L(ND)和Pig,T(ND)惡化。最後,透過分析CS/CD和/或NS/ND之火核發展高速紋影影像,來解釋前述實驗結果,本研究有助於擬定貧油火花引燃引擎之引燃策略。
摘要(英) In this thesis, single- and dual-channel sparks are used to investigate experimentally laminar and turbulent premixed spherical flame initiation using both conventional-single-shot-discharge (CSSD represented by the Alphabet C) and nanosecond-repetition-pulse-discharge (NRPD represented by the Alphabet N) ignition systems, and their ignition abilities are compared. All electrodes are made of stainless steel and 1 mm in diameter with flat-end. The dual-channel spark configuration is consisted of two parallel anode electrodes with a fixed apart distance of 2.6 mm and one central cathode electrode on the same vertical plane, capable of forming two spatially separated and temporally synchronized spark channels. Ignition experiments using the lean n-butane/air mixture at the equivalent ratio  = 0.7 with an effective Lewis number Le  2.2 ≫ 1 are conducted in a double-chamber, constant-temperature/pressure, fan-stirred explosion facility that can be used to generate a near-isotropic turbulent flow field with negligible mean velocities over a wide range of r.m.s turbulent fluctuating velocity (u = 0-4.9 m/s). For conventional single- and dual-channel electrode configurations at spark gap dgap = 0.8 mm (CS-0.8 and CD-0.8-0, corresponding to
CS-dgap and CD-dgap-L where L is the tip distance between anode and cathode electrodes on the same vertical plane), nearly the same ignition characteristics in quiescence are found, as can be seen by nearly the same values of laminar minimum ignition energy at 50% ignitability (MIEL  18 mJ), critical flame radius (Rc  3.7 mm), and initial kernel development delay time (delay  11.3 ms). The same total ignition energy Etot  18 mJ
 MIEL for CS-0.8 and CD-0.8-0 cases is applied to NS-dgap and ND-dgap-L cases at different values of dgap via a train of 9 pulses (NS) and 6 pulses (ND), where each pulse has an ignition energy Eig  2.2 mJ (NS) and 3.3 mJ (ND) except for the first pulse having smaller but the same Eig,1st  0.8 mJ for both NS and ND configurations regardless of dgap and the pulse repetition frequency (PRF). Laminar and turbulent ignition probabilities (Pig,L and Pig,T) are measured over a range of PRF = 1-100 kHz and u = 0-4.9 m/s. Unlike the commonly-held view that the larger the ignition kernel is, the higher the value of Pig,L is, we find no successful ignition for the case of ND-0.8-0, where Pig,L = 0% at all values of PRF. But in the NS-0.8 case, there is a synergistic effect due to the coherence between PRF and the inward reactant flow recirculation frequency (fRC) at PRF = 40 kHz, where Pig,L = 58% > 50% at the same Etot  MIEL(CS-0.8)  18 mJ. The result is reversed when dgap = 2.0 mm, where Pig,L(ND) > Pig,L(NS) at PRFs = 1-5 kHz and Pig,L(ND) = Pig,L(NS) = 100% for PRFs = 10-100 kHz. As to the turbulent cases at
PRF = 40 kHz and dgap = 2.0 mm, three ignition regimes with drastically different Pig,T are observed: (I) Pig,T(ND) = Pig,T(NS) = 100% when u < 1 m/s; (II) Pig,T(ND) > Pig,T(NS) when 1 m/s < u < 4 m/s showing the ignition enhancement of ND configuration;
(III) Pig,T(ND) = Pig,T(NS) = 0% when u > 4.2 m/s. A further increase of dgap to 2.8 mm for the ND configuration deteriorates Pig,L(ND) and Pig,T(ND) as compared to those of NS-2.0 and/or ND-2.0-1.8 configurations. Finally, high-speed schlieren images of CS/CD and/or NS/ND kernel evolutions are shown to comprehend these results which may be relevant to a better ignition strategy selection in lean-burn spark ignition engines.
關鍵字(中) ★ 預混球狀火焰引燃
★ 雙通道式放電引燃
★ 奈秒重複脈衝放電引燃
★ 火花電極間距
★ 層流與紊流引燃機率
★ 引燃增強與劣化
關鍵字(英) ★ Premixed Spherical Flame Initiation
★ Dual-Channel Spark
★ Nanosecond-Repetition-Pulse-Discharge
★ Spark Gap
★ Laminar and Turbulent Ignition Probabilities
★ Ignition Enhancement and Deterioration
論文目次 中文摘要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
CONTENT vi
LIST OF FIGURES viii
LIST OF TABLES xi
NOMENCLATURE xii
CHAPTER I. INTRODUCTION 1
1-1 Motivation 1
1-2 Conventional-Single-Short-Discharge 2
1-3 Nanosecond-Repetition-Pulse-Discharge 4
1-4 Multi-channel Spark Discharge 7
1-5 Objective of Study 7
1-6 Thesis Outline 10
CHAPTER II. THE NATURE OF SPARK IGNITION 11
2-1 Equilibrium/Non-equilibrium Plasma and Plasma assisted Combustion 11
2-2 Minimum Ignition Energy and Ignition Probability 13
2-3 Effect of Spark Gap in Electrode Configuration 15
2-4 Effect of Differential Diffusion in the Combustible Mixture 17
2-5 Critical Flame Radius in Flame Initiation and Development 19
CHAPTER III. EXPERIMENTAL METHODS 21
3-1 Combustion Chamber and Auxiliary System 21
3-2 Ignition Systems and Ignition Probability Measurements 23
3-2-1 Single-channel and Dual-channel Electrode Configurations 23
3-2-2 Conventional-Single-Shot-Discharge and Nanosecond- Repetition- Pulse-Discharge Ignition Systems 25
3-2-3 Ignition Energy and Ignition Probability Measurements 26
3-3 Flame Image Capturing System 28
3-4 Fuel/Air Mixture Calculation and Preparation 30
3-5 Experimental Procedure 31
CHAPTER IV. RESULTS AND DISCUSSION 32
4-1 MIE Measurements and Flame Developments of CS-0.8 and CD-0.8 in Quiescence 32
4-2 Comparison on NS and ND Discharge Characteristics in Air 36
4-3 Laminar Ignition Probability versus Cumulative Ignition Energy at
PRF = 20 kHz 38
4-4 Laminar Ignition Probability and Initial Kernel Evolution at Different PRFs in NRPD 39
4-5 Ignition Enhancement and Deterioration by ND at Large dgap in Turbulence 46
CHAPTER V. CONCLUSIONS AND FUTURE WORKS 49
5-1 Conclusions 49
5-2 Future works 50
BIBLIOGRAPHY 52
APPENDIX A Ignition energy data sets for laminar minimum ignition energy determination with CS-0.8 and CD-0.8-0 electrode configurations 59
APPENDIX B The laminar ignition probabilities and ignition probability curves of NS and ND at PRF = 20 kHz. 60
APPENDIX C Sequential schlieren images of lean n-butane/air mixture at  = 0.7,
T = 300 K, p = 1 atm in quiescence ignited by NS-0.8 at PRF = 20 kHz using Np = 300 (Etot  660 mJ). 61
APPENDIX D Ignition probability at different u of NS-2.0, ND-2.0-1.8, and
ND-2.8-1.8 using the same Etot  18 mJ at PRF = 40 kHz. 62
參考文獻 [1] International Energy Agency, World Energy Outlook 2021, Paris, France, 2021.
[2] International Energy Agency, Largest end-uses of energy by sector in selected IEA countries, 2018, Paris, France, 2018.
[3] International Energy Agency, Energy consumption in road transport in selected IEA countries, 2000-2018, Paris, France, 2018.
[4] The Technical Publications Department, The jet engine, Roll-Royce plc, England, 1996, p. 128-131.
[5] A. Singh, Aero engines, LNVM Society Group of Institutes, India, 2007, p. 49.
[6] R.W. Read, Experimental Investigations into High-Altitude Relight of a Gas Turbine, PhD Thesis, Homerton College, University of Cambridge, England, 2008.
[7] European Union Aviation Safety Agency, Turbine engine relighting in flight, EASA Certification Memorandum No.: CM-PIFS-010 Issue 01, Germany, 2015.
[8] L. Palanti, A. Andreini, B. Facchini, Numerical prediction of the ignition probability of a lean spray burner, Int. J. Spray Combust. Dyn. 13 (2021) 96-109.
[9] P.M. Oliveira, M.P. Sitte, M. Zedda, A. Guisti, E. Mastorakos, Low-order modeling of high-altitude relight of jet engine combustors, Int. J. Spray Combust. Dyn. 13 (2021) 20-34.
[10] S.V. Pancheshnyi, D.A. Lacoste, A. Bourdon, C.O. Laux, Ignition of propane–air mixtures by a repetitively pulsed nanosecond discharge, IEEE Trans. Plasma Sci. 34 (2006) 2478-2487.
[11] S.M. Starikovskaia, Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms, J. Phys. D: Appl. Phys. 47 (2014) 353001 (34pp).
[12] K. Tanoue, T. Kuboyama, Y. Moriyoshi, E. Hotta, Y. Imanishi, N. Shimizu, K. Iida, Development of a Novel Ignition System Using Repetitive Pulse Discharges: Application to a SI Engine, SAE Int. J. Engines 2 (2009) 298-306.
[13] A.A. Tropina, A.P. Kuzmenko, S.V. Marasov, D.V. Vilchinsky, Ignition System Based on the Nanosecond Pulsed Discharge, IEEE Trans. Plasma Sci. 42 (2014) 3881-3885.
[14] J.K. Lefkowitz, P. Guo, T. Ombrello, S.H. Won, C.A. Stevens, J.L. Hoke,
F. Schauer, Y. Ju, Schlieren imaging and pulsed detonation engine testing of ignition by a nanosecond repetitively pulsed discharge, Combust. Flame 162 (2015) 2496-2507.
[15] J.K. Lefkowitz, Y. Ju, C.A. Stevens, T. Ombrello, F. Schauer, J. Hoke, The Effects of Repetitively Pulsed Nanosecond Discharges on Ignition Time in a Pulsed Detonation Engine, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, 2016.
[16] J.K. Lefkowitz, T. Ombrello, An exploration of inter-pulse coupling in nanosecond pulsed high frequency discharge ignition, Combust. Flame 180 (2017) 136-147.
[17] D.I. Pineda, B. Wolk, T. Sennott, J. Chen, R.W. Dibble, D. Singleton, Nanosecond Pulsed Discharge Ignition in a Lean Methane-Air Mixture, Laser Ignition Conference, OSA Technical Digest, (2015) paper T5A.2.
[18] M. Castela, S. Stepanyan, B. Fiorina, A. Coussement, O. Gicquel, N. Darabiha, C.O. Laux, A 3-D DNS and experimental study of the effect of the recirculating flow pattern inside a reactive kernel produced by nanosecond plasma discharges in a methane-air mixture, Proc. Combust. Inst. 36 (2017) 4095-4103.
[19] S. Stepanyan, J. Hayashi, A. Salmon, G.D. Stancu, C.O. Laux, Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges, Plasma Sources Sci. Technol. 26 (2017) 04LT01 (7pp).
[20] S. Lovascio, T. Ombrello, J. Hayashi, S. Stepanyan, X. Da, G.D. Stancu, C.O. Laux, Effects of pulsation frequency and energy deposition on ignition using nanosecond repetitively pulsed discharges, Proc. Combust. Inst. 36 (2017) 4079-4086.
[21] J.K. Lefkowitz, T. Ombrello, Reduction of flame development time in nanosecond pulsed high frequency discharge ignition of flowing mixtures, Combust. Flame 193 (2018) 471-480.
[22] M.T. Nguyen, A Comparative Study of Conventional Spark Ignition and Nanosecond Repetitively Pulsed Discharge in Premixed Turbulent Combustion, National Central University, Taiwan, 2019.
[23] I. Dunn, K.A. Ahmed, R.J. Leiweke, T.M. Ombrello, Optimization of flame kernel ignition and evolution induced by modulated nanosecond-pulsed high-frequency discharge, Proc. Combust. Inst. 38 (2021) 6541-6550.
[24] C. Dumitrache, A. Gallant, N. Minesi, S. Stepanyan, G.D. Stancu, C.O. Laux, Hydrodynamic regimes induced by nanosecond pulsed discharges in air: mechanism of vorticity generation, J. Phys. D: Appl. Phys. 52 (2019) 364001 (13pp).
[25] S. Lovascio, J. Hayashi, S. Stepanyan, G.D. Stancu, C.O. Laux, Cumulative effect of successive nanosecond repetitively pulsed discharges on the ignition of lean mixtures, Proc. Combust. Inst. 37 (2019) 5553-5560.
[26] M.T. Nguyen, S.S. Shy, Y.R. Chen, B.L. Lin, S.Y. Huang, C.C. Liu, Conventional spark versus nanosecond repetitively pulsed discharge for a turbulence facilitated ignition phenomenon, Proc. Combust. Inst. 38 (2021) 2801-2808.
[27] S. Stepanyan, N. Minesi, A. Tibère-Inglesse, A. Salmon, G.D. Stancu, C.O. Laux, Spatial evolution of the plasma kernel produced by nanosecond discharges in air,
J. Phys. D: Appl. Phys. 52 (2019) 295203 (11pp).
[28] S.S. Shy, Y.R. Chen, B.L. Lin, A. Maznoy, Ignition enhancement and deterioration by nanosecond repetitively pulsed discharges in a randomly-stirred lean
n-butane/air mixture at various inter-electrode gaps, Combust. Flame 231 (2021) 111506.
[29] D.A. Xu, M.N. Shneider, D.A. Lacoste, C.O. Laux, Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air, J. Phys. D: Appl. Phys. 47 (2014) 235202 (13pp).
[30] D.A. Xu, D.A. Lacoste, C.O. Laux, Ignition of Quiescent Lean Propane–Air Mixtures at High Pressure by Nanosecond Repetitively Pulsed Discharges, Plasma Chem. Plasma Process 36 (2016) 309-327.
[31] M. Balmelli, R. Farber, L. Merotto, P. Soltic, D. Bleiner, C.M. Franck, Experimental Analysis of Breakdown With Nanosecond Pulses for Spark-Ignition Engines, IEEE Access 9 (2021) 100050-100062.
[32] L. Merotto, M. Balmelli, W. Vera-Tudela, P. Soltic, Comparison of ignition and early flame propagation in methane/air mixtures using nanosecond repetitively pulsed discharge and inductive ignition in a pre-chamber setup under engine relevant conditions, Combust. Flame 237 (2022) 111851.
[33] J.L. Beduneau, N. Kawahara, T. Nakayama, E. Tomita, Y. Ikeda, Laser-induced radical generation and evolution to a self-sustaining flame, Combust. Flame 156 (2009) 642-656.
[34] C. Strozzi, P. Gillard, J.P. Minard, Laser-induced spark ignition of gaseous and quiescent n-decane–air mixtures, Combust. Sci. Technol. 186 (2014) 1562-1581.
[35] Y. Sung, G. Charalampous, Y. Hardalupas, G. Choi, Laser ignition and flame characteristics of pulsed methane jets in homogeneous isotropic turbulence without mean flow, Proc. Combust. Inst. 36 (2017) 1653-1663.
[36] Y. Kobayashi, S. Nakaya, M. Tsue, Laser-induced spark ignition for DME–air mixtures with low velocity, Proc. Combust. Inst. 37 (2019) 4127-4135.
[37] S. Jo, J.P. Gore, Laser ignition energy for turbulent premixed hydrogen air jets, Combust. Flame 236 (2022) 111767.
[38] D. Jung, K. Sasaki, N. Iida, Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation, Appl. Energy 205 (2017) 1467-1477.
[39] D. Jung, N. Iida, An investigation of multiple spark discharge using multi-coil ignition system for improving thermal efficiency of lean Si engine operation, Appl. Energy 212 (2018) 322-332.
[40] S. Tsuboi, S. Miyokawa, M. Matsuda, T. Yokomori, N. Iida, Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine, Appl. Energy 250 (2019) 617-632.
[41] R.J. Craver, R.S. Podiak, R.D. Miller, Spark Plug Design Factors and Their Effect on Engine Performance, SAE Technical Paper 79 (1970) 229-239.
[42] H.N. Gupta, Fundamentals of Internal Combustion Engines, PHI Learning Pvt. Ltd., New Delhi, 2009, p. 166.
[43] J. Han, H. Yamashita, N. Hayashi, Numerical study on the spark ignition characteristics of a methane–air mixture using detailed chemical kinetics. Effect of equivalence ratio, electrode gap distance, and electrode radius on MIE, quenching distance, and ignition delay, Combust. Flame 157 (2010) 1414-1421.
[44] W. Chen, D. Madison, P. Dice, J. Naber, B. Chen, S. Mires, Impact of Ignition Energy Phasing and Spark Gap on Combustion in a Homogenous Direct Injection Gasoline SI Engine Near the EGR Limit, SAE Technical Paper, (2013) 2013-2001-1630.
[45] S.S. Shy, M.T. Nguyen, S.Y. Huang, Effects of electrode spark gap, differential diffusion, and turbulent dissipation on two distinct phenomena: Turbulent facilitated ignition versus minimum ignition energy transition, Combust. Flame 205 (2019) 371-377.
[46] S. Yu, K. Xie, Q. Tan, M. Wang, M. Zheng, Ignition Improvement of Premixed Methane-Air Mixtures by Distributed Spark Discharge, SAE Technical Paper, (2015) 2015-2001-1889.
[47] S. Yu, M. Wang, M. Zheng, Distributed Electrical Discharge to Improve the Ignition of Premixed Quiescent and Turbulent Mixtures, SAE Technical Paper, (2016) 2016-2001-0706.
[48] K. Xie, X. Yu, X. Yu, G. Bryden, M. Zheng, Investigation of Multi-Pole Spark Ignition Under Lean Conditions and with EGR, SAE Technical Paper, (2017) 2017-2001-0679.
[49] B. Lin, Y. Wu, Z. Zhang, Z. Chen, Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures, Combust. Flame 182 (2017) 102-113.
[50] B. Lin, Y. Wu, Z. Zhang, D. Bian, D. Jin, Ignition enhancement of lean propane/air mixture by multi-channel discharge plasma under low pressure, App. Thermal Eng. 148 (2019) 1174-1182.
[51] H. Zhao, N. Zhao, T. Zhang, S. Wu, G. Ma, C. Yan, Y. Ju, Studies of multi-channel spark ignition of lean n-pentane/air mixtures in a spherical chamber, Combust. Flame 212 (2020) 337-344.
[52] C.C. Huang, S.S. Shy, C.C. Liu, Y.Y. Yan, A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proc. Combust. Inst. 31 (2007) 1401-1409.
[53] S.S. Shy, W.T. Shih, C.C. Liu, More on Minimum Ignition Energy Transition for Lean Premixed Turbulent Methane Combustion in Flamelet and Distributed Regimes, Combust. Sci. and Tech. 180 (2008) 1735-1747.
[54] S.S. Shy, C.C. Liu, W.T. Shih, Ignition transition in turbulent premixed combustion, Combust. Flame 157 (2010) 341-350.
[55] M.W. Peng, S.S. Shy, Y.W. Shiu, C.C. Liu, High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, Combust. Flame 160 (2013) 1755-1766.
[56] S.S. Shy, Y.W. Shiu, L.J. Jiang, C.C. Liu, S. Minaev, Measurement and scaling of minimum ignition energy transition for spark ignition in intense isotropic turbulence from 1 to 5 atm, Proc. Combust. Inst., (2017) 1785-1791.
[57] L.J. Jiang, S.S. Shy, M.T. Nguyen, S.Y. Huang, D.W. Yu, Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion, Combust. Flame 187 (2018) 87-95.
[58] S.S. Shy, Y.C. Liao, Y.R. Chen, S.Y. Huang, Two ignition transition modes at small and large distances between electrodes of a lean primary reference automobile fuel/air mixture at 373 K with Lewis number >> 1, Combust. Flame 225 (2021) 340-348.
[59] Z. Chen, M.P. Burke, Y. Ju, On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc. Combust. Inst. 33 (2011) 1219-1226.
[60] C.T. d’Auzay, V. Papapostolou, S.F. Ahmed, N. Chakraborty, On the minimum ignition energy and its transition in the localised forced ignition of turbulent homogeneous mixtures, Combust. Flame 201 (2019) 104-117.
[61] T. Horstmann, W. Leuckel, B. Maurer, U. Maas, Influence of turbulent flow conditions on the ignition of flammable gas/air mixtures, Process Saf. Prog. 20 (2001) 215-224.
[62] R.K. Eckhoff, M. Ngo, W. Olsen, On the minimum ignition energy (MIE) for propane/air, J. Hazard. Mater. 175 (2010) 293-297.
[63] S.P.M. Bane, J.L. Ziegler, P.A. Boettcher, S.A. Coronel, J.E. Shepherd, Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen, J. Loss Prevent. Process Ind. 26 (2013) 290-294.
[64] T. Denton, Automobile Electrical and Electronic Systems, 3rd ed., Elsevier Butterworth-Heinemann, Oxford, 2004, p. 433.
[65] K.C. Opacich, T.M. Ombrello, J.S. Heyne, J.K. Lefkowitz, R.J. Leiweke, K. Busby, Analyzing the ignition differences between conventional spark discharges and nanosecond-pulsed high-frequency discharges, Proc. Combust. Inst. 38 (2021) 6615-6622.
[66] A.P. Kelley, G. Jomaas, C.K. Law, Critical radius for sustained propagation of spark ignited spherical flames, Combust. Flame 156 (2009) 1006-1013.
[67] Z. Chen, M.P. Burke, Y. Ju, Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames, Proc. Combust. Inst. 32 (2009) 1253-1260.
[68] V.T. Mai, S.S. Shy, Y.R. Chen, Single- and dual-channel nanosecond repetitively pulsed discharges at small and large spark gaps for turbulent premixed spherical flame initiation, Proc. Combust. Inst. 39 (2022), doi: 10.1016/j.proci.2022.08.078.
[69] Y. Ju, W. Sun, Plasma assisted combustion: Dynamics and chemistry, Prog. Energy Combust. Sci. 48 (2015) 21-83.
[70] S.M. Starikovskaia, Plasma assisted ignition and combustion, J. Phys. D: Appl. Phys. 39 (2006) 265–299.
[71] A. Starikovskiy, N. Aleksandrov, Plasma-assisted ignition and combustion, Prog. Energy Combust. Sci. 39 (2013) 61-110.
[72] Z. Chen, Y. Ju, Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame, Combust. Theory Model. 11 (2007) 427-453.
[73] B. Lewis, G.v. Elbe, Combustion, Flames and Explosions of Gases, 3rd. ed., Academic Press, Orlando, 1987.
[74] S.P.M. Bane, Spark Ignition: Experimental and Numerical Investigation With Application to Aviation Safety, PhD Thesis California Institute of Technology, Pasadena, California, 2010.
[75] S.S. Shy, M.T. Nguyen, S.Y. Huang, C.C. Liu, Is turbulent facilitated ignition through differential diffusion independent of spark gap?, Combust. Flame 185 (2017) 1-3.
[76] T. Kravchik, E. Sher, J.B. Heywood, From Spark Ignition to Flame Initiation, Combust. Sci. and Tech. 108 (1995) 1-30.
[77] Y.P. Raizer, Gas Discharge Physics, Springer-Verlag Berlin Heidelberg, Germany, 1991, p. 67.
[78] M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing, Jonh Wiley & Sons, Inc., Hoboken, New Jersey, 2005, p. 546.
[79] J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill Education, New York, 2018, p. 443.
[80] C.K. Law, Combustion Physics, Cambridge University Press, New York, 2006,
p. 369-471.
[81] A. Saha, S. Yang, C.K. Law, On the competing roles of turbulence and differential diffusion in facilitated ignition, Proc. Combust. Inst. 37 (2019) 2383-2390.
[82] F. Wu, A. Saha, S. Chaudhuri, C.K. Law, Facilitated Ignition in Turbulence through Differential Diffusion, Phys. Rev. Lett. 113 (2014) 024503.
[83] V.I. Parvulescu, M. Magureanu, P. Lukes, Plasma chemistry and catalysis in gases and liquids, Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany, 2012, p. 22.
[84] I. Glassman, R.A. Yetter, N.G. Glumac, Combustion, Academic Press, Elsevier, USA, 2015, p. 734.

指導教授 施聖洋(Shenqyang (Steven) Shy) 審核日期 2022-12-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明