博碩士論文 101326007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.16.47.65
姓名 孫紹恩(Shao-En Sun)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 建置序列式氣膠收集系統於GC-TCD氣膠含水量量測並應用在一個都市氣膠
(Development of a sequential aerosol collection system for GC-TCD aerosol water measurement and application to an urban aerosol)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氣膠含水量(Aerosol Water Content, AWC)在二次氣膠生成、雲與氣膠交互作用和大氣能見度降低中扮演重要的角色,但是在實場進行現地AWC的直接量測非常少。本文發展出一套序列式氣膠含水量量測系統(Sequential Aerosol Water Measurement System, SAWMS),可以進行氣膠序列採樣,並經由量測三種常見的無機鹽類(NaCl、NH4NO3和 (NH4)2SO4)增溼與降溼過程中的AWC,比較熱力學模式模擬的AWC而得到驗證。本文進一步比較量測的AWC和氣膠學界常使用的H-TDMA(High Tandem Differential Mobility Analyzer)量測的氣膠體積變化,以推導出的氣膠質量變化(Aerosol Mass Change, AMC)、吸濕係數、成長因子關係式,發現量測的AWC與H-TDMA量測結果有可比較性。為了瞭解環境實場AWC變化,本文佈設SAWMS系統進行現地採樣與分析,於2019年在環境保護署的小港空氣品質監測站進行AWC量測,採樣期間SAWMS的AWC量測相對濕度設定在90%,PM2.5的平均AWC為39.0 ± 14.3 μg m-3比PM2.5監測平均值高出140%。濾紙分析完AWC後進一步解析水溶性無機離子(Water-soluble inorganic ions, WSIIs)含量提供ISORROPIA II模擬AWC,量測與模擬的AWC有非常好的相關性(R2 = 0.85; n = 39, p < 0.05)說明WSIIs貢獻大部分的AWC。本文選取三樣本進行多個相對濕度的增降濕分析以觀察AWC的變化,發現增濕過程中量測與模擬的AWC在60 – 80%相對濕度有較顯著的差異,可能因為在環境中氣膠實際的結合型態與混合狀態與模擬的有所不同。採樣期間氮氧化比與AWC有不錯的相關性(R2 = 0.70; n = 35, p < 0.05),代表AWC與NO3-的生成有關聯。
總結來說,本文發展出SAWMS進行序列氣膠採樣,並使用熱力學模式進行AWC量測的驗證,為了展現SAWMS現地量測AWC效能,本文在一個都市站點(小港)量測大氣氣膠的吸濕特性,連結AWC、WSIIs、環境因子,對瞭解氣膠影響都市能見度有大的助益。
摘要(英) Aerosol water content (AWC) plays a significant role in secondary aerosol formation, aerosol-cloud interaction, and atmospheric visibility degradation. In field applications, direct measurement of AWC is rare. This study developed a sequential aerosol-water measurement system (SAWMS) capable of continuous aerosol collection and verified the measured AWC by comparing humidographs, generated with the SAWMS method in the laboratory, of three common salts (NaCl, NH4NO3, and (NH4)2SO4) with thermodynamic equilibrium models (ISORROPIA II, and E-AIM). To compare the SAWMS-measured AWC with volume-based measurements obtained in previous studies using H-TDMAs (High Tandem Differential Mobility Analyzer), the relationships of the hygroscopicity parameter () with aerosol mass change (AMC) and the growth factor (GF) with AMC were first derived. The derived  and GF by AMC were comparable to those measured by H-TDMA. This study also deployed the SAWMS for in-situ measurements of AWC at the Taiwan Environmental Protection Administration Xiaogang (XG) site in Kaohsiung city. During the sampling period, the RH for the SAWMS measured AWC was set at 90% and the average PM2.5 concentration was 39.0 ± 14.3 μg m-3, which was 140% higher than the monitoring PM2.5 concentration. The WSIIs of aerosols on the filters were analyzed after AWC measurement, then applied to the ISORROPIA II model. The modeled and measured AWC was well-correlated (R2 = 0.85; n = 39, p < 0.05), indicating that WSIIs contributed the most to AWC. Humidographs were constructed to analyze the AWC values under varying RH levels during the humidification and dehumidification processes for the three selected samples. The humidification results revealed a significant difference between the measured and modeled AWC within 60 – 80% RH. This might be due to deviations in aerosol combination types and the mixing state from atmospheric conditions. The nitrogen oxidation ratio and the AWC were well-correlated (R2 = 0.70; n = 35, p < 0.05) throughout the sampling period, implying that the measured AWC was related to NO3- formation in the urban area.
In summary, this study developed SAWMS to collect aerosols and measure AWC simultaneously, and then verify the measured AWC by thermodynamic equilibrium models. To demonstrate the ability of SAWMS in a field experiment, this study investigated the hygroscopic nature of urban aerosols collected from the urban site (Xiaogang). Connecting the AWC to WSII and meteorological factors provides key links to the impact of aerosols on urban visibility.
關鍵字(中) ★ 氣膠含水量量測
★ 氣膠吸濕特性
★ 都市氣膠含水量
關鍵字(英) ★ aerosol water content measurement
★ aerosol hygroscopicity
★ aerosol water content of urban aerosol
論文目次 Chinese Abstract III
Abstract IV
Acknowledgments VI
Table of content VII
List of figures IX
List of tables XI
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Objective 3
Chapter 2. Literature review 4
2.1. The measurements of aerosol water content 4
2.1.1. The thermal-ramp Karl-Fischer (tr-KF) method 4
2.1.2. The GC-TCD method 5
2.1.3. The Dry-Ambient Aerosol Size Spectrometer (DAASS) method 6
2.1.4. The derivation of AWC from Lidar measurement 7
2.2. The aerosol water content of organic aerosols 8
2.3. The aerosol water content of atmospheric aerosols 9
2.4. The impact of aerosol water content on secondary aerosol formation 10
2.5. The aerosol hygroscopicity 11
Chapter 3. Methodology 12
3.1. Aerosol water content 13
3.2. Sequential aerosol-water measurement system 14
3.3. Preparation of single salts 18
3.4. Thermodynamic equilibrium models 19
3.4.1. Additive method 19
3.5. Hygroscopicity parameter and growth factor derived from measured aerosol water content 21
3.6. The field study 22
3.6.1. Sampling site 22
3.6.2. Sampling instruments 23
Chapter 4. Results and Discussion 24
4.1. System background water and temperature control 24
4.1.1. System background water 24
4.1.2. Temperature Control 26
4.2. Measurement validation of aerosol water content 27
4.3. Aerosol water content of a mixed salt 30
4.4. Hygroscopicity parameter (κ) and growth factor (GF) 32
4.5. Aerosol water content of the urban aerosol 34
4.6. The humidographs and mixing state of the atmospheric aerosols 40
4.7. The time variation of the AWC in the atmosphere 44
4.8. Nitrogen oxidation ratio and Sulfur oxidation ratio 46
Chapter 5. Conclusions and Suggestions 48
5.1. Conclusions 48
5.2. Suggestions 50
Chapter 6. References 51
Appendix I. Replies to the Questions and Comments from Committee Members 57
Appendix II. System Background Water of SAWMS at Different Experimental Stages 70
參考文獻 Canepari, S., Farao, C., Marconi, E., Giovannelli, C., Perrino, C., 2013. Qualitative and quantitative determination of water in airborne particulate matter. Atmospheric Chemistry and Physics 13, 1193-1202.
Canepari, S., Simonetti, G., Perrino, C., 2017. Mass size distribution of particle-bound water. Atmospheric Environment. 165, 46-56.
Carrico, C.M., Petters, M.D., Kreidenweis, S.M., Sullivan, A.P., McMeeking, G.R., Levin, E.J.T., Engling, G., Malm, W.C., Collett, J.L., Jr., 2010. Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmospheric Chemistry and Physics 10, 5165-5178.
Chan, M.N., Choi, M.Y., Ng, N.L., Chan, C.K., 2005. Hygroscopicity of Water-Soluble Organic Compounds in Atmospheric Aerosols:  Amino Acids and Biomass Burning Derived Organic Species. Environmental Science and Technology 39, 1555-1562.
Chang, S.-Y., Lee, C.-T., 2002. Applying GC-TCD to investigate the hygroscopic characteristics of mixed aerosols. Atmospheric Environment. 36, 1521-1530.
Choi, M.Y., Chan, C.K., 2002. Continuous Measurements of the Water Activities of Aqueous Droplets of Water-Soluble Organic Compounds. The Journal of Physical Chemistry A 106, 4566-4572.
Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998. Thermodynamic model of the system H+− NH4+− Na+− SO42-− NO3-− Cl-− H2O at 298.15 K. The Journal of Physical Chemistry A 102, 2155-2171.
Colbeck, I., Harrison, R.M. (1984). Ozone—secondary aerosol—visibility relationships in North-West England. Science of the Total Environment 34, 87-100.
Cruz, C.N., Pandis, S.N., 2000. Deliquescence and hygroscopic growth of mixed inorganic− organic atmospheric aerosol. Environmental Science and Technology 34, 4313-4319.
Dai, H., Gui, H., Zhang, J., Wei, X., Xie, Z., Bian, J., Chen, D.-R., Liu, J., 2021. An active RH-controlled dry-ambient aerosol size spectrometer (DAASS) for the accurate measurement of ambient aerosol water content. Journal of Aerosol Science 158, 105831.
Dick, W.D., Saxena, P., McMurry, P.H., 2000. Estimation of water uptake by organic compounds in submicron aerosols measured during the Southeastern Aerosol and Visibility Study. Journal of Geophysical Research: Atmospheres 105, 1471-1479.
Engelhart, G., Hildebrandt, L., Kostenidou, E., Mihalopoulos, N., Donahue, N.M., Pandis, S.N., 2011. Water content of aged aerosol. Atmospheric Chemistry and Physics 11, 911-920.
Fajardo, O.A., Jiang, J., Hao, J., 2016. Continuous Measurement of Ambient Aerosol Liquid Water Content in Beijing. Aerosol and Air Quality Research 16, 1152-1164.
Faust, J.A., Wong, J.P., Lee, A.K., Abbatt, J.P., 2017. Role of aerosol liquid water in secondary organic aerosol formation from volatile organic compounds. Environmental Science and Technology 51, 1405-1413.
Fredenslund, A., Jones, R.L., Prausnitz, J.M., 1975. Group‐contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal 21, 1086-1099.
Friese, E., Ebel, A., 2010. Temperature dependent thermodynamic model of the system H+− NH4+− Na+− SO42−− NO3−− Cl−− H2O. The Journal of Physical Chemistry A 114, 11595-11631.
Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+−Ca2+−Mg2+− NH4+−Na+−SO42-−NO3-−Cl-−H2O aerosols. Atmos. Chem. and Phys. 7, 4639-4659.Jin, X., Wang, Y., Li, Z., Zhang, F., Xu, W., Sun, Y., Fan, X., Chen, G., Wu, H., Ren, J., 2020. Significant contribution of organics to aerosol liquid water content in winter in Beijing, China. Atmospheric Chemistry and Physics 20, 901-914.
Gysel, M., Weingartner, E., Baltensperger, U., 2002. Hygroscopicity of Aerosol Particles at Low Temperatures. 2. Theoretical and Experimental Hygroscopic Properties of Laboratory Generated Aerosols. Environmental Science and Technology 36, 63-68.
Hakala, J., Mikkilä, J., Hong, J., Ehn, M., Petäjä, T., 2017. VH-TDMA: A description and verification of an instrument to measure aerosol particle hygroscopicity and volatility. Aerosol Science and Technology 51, 97-107.
Hänel, G., 1976. The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Advances in Geophysics 19, 73-188.
Hennig, T., Massling, A., Brechtel, F., Wiedensohler, A., 2005. A tandem DMA for highly temperature-stabilized hygroscopic particle growth measurements between 90% and 98% relative humidity. Journal of Aerosol Science 36, 1210-1223.
Hu, D., Chen, J., Ye, X., Li, L., Yang, X., 2011. Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: Relative humidity and size effects on the growth factor. Atmospheric Environment 45, 2349-2355.
Koehler, K., Kreidenweis, S., DeMott, P., Prenni, A., Carrico, C., Ervens, B., Feingold, G., 2006. Water activity and activation diameters from hygroscopicity data-Part II: Application to organic species. Atmospheric Chemistry and Physics 6, 795-809.
Kuang, Y., Zhao, C.S., Zhao, G., Tao, J.C., Xu, W., Ma, N., Bian, Y.X., 2018. A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system. Atmospheric Measurement Techniques 11, 2967.
Lee, C.-T., Chang, S.-Y., 2002. A GC-TCD method for measuring the liquid water mass of collected aerosols. Atmospheric Environment 36, 1883-1894.
Lee, C.-T., Hsu, W.-C., 1998. A novel method to measure aerosol water mass. Journal of Aerosol Science 29, 827-837.
Lee, Y.-C., Jeng, F.-T., Chen, C.-C., 2008. Technique for aerosol generation with controllable micrometer size distribution. Chemosphere 73, 760-767.
Li, X., Song, S., Zhou, W., Hao, J., Worsnop, D.R., Jiang, J., 2019. Interactions between aerosol organic components and liquid water content during haze episodes in Beijing. Atmospheric Chemistry and Physics 19, 12163-12174
Liu, Q., Jing, B., Peng, C., Tong, S., Wang, W., Ge, M., 2016. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance. Atmospheric Environment 125, 69-77.
Ma, Q., Ma, J., Liu, C., Lai, C., He, H., 2013. Laboratory study on the hygroscopic behavior of external and internal C2–C4 dicarboxylic acid–NaCl mixtures. Environmental Science and Technology 47, 10381-10388.
Ma, Q., Zhong, C., Liu, C., Liu, J., Ma, J., Wu, L., He, H., 2019. A comprehensive study about the hygroscopic behavior of mixtures of oxalic acid and nitrate salts: implication for the occurrence of atmospheric metal oxalate complex. ACS Earth and Space Chemistry 3, 1216-1225.
Meyer, A., Boyd, C., 1959. Determination of water by titration with coulometrically generated Karl Fischer reagent. Analytical Chemistry 31, 215-219.
Mikhailov, E., Vlasenko, S., Niessner, R., Pöschl, U., 2003. Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement. Atmospheric Chemistry and Physics Discussions 3(5), 4755-4832.
Park, K., Kim, J.-S., Miller, A.L., 2009. A study on effects of size and structure on hygroscopicity of nanoparticles using a tandem differential mobility analyzer and TEM. Journal of Nanoparticle Research 11, 175-183.
Perrino, C., Catrambone, M., Farao, C., Canepari, S., 2016. Assessing the contribution of water to the mass closure of PM10. Atmospheric Environment 140, 555-564.
Petters, M., Kreidenweis, S., 2008. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity–Part 2: Including solubility. Atmospheric Chemistry and Physics 8, 6273-6279.
Petters, M.D., Kreidenweis, S.M., 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics 7, 1961-1971.
Rader, D., McMurry, P.H., 1986. Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation. Journal of Aerosol Science 17, 771-787.
Ren, J., Tan, W., Tian, X., Wu, Z., Li, C., Li, J., Zhao, C., Liu, D., Kang, L., Zhu, T., 2021. Retrieval of aerosol liquid water content from high spectral resolution lidar. Science of The Total Environment 799, 149423.
Rossich Molina, E.a., Gerber, R.B., 2019. Microscopic mechanisms of N2O5 hydrolysis on the surface of water droplets. The Journal of Physical Chemistry A 124, 224-228.
Speer, R., Barnes, H., Brown, R., 1997. An instrument for measuring the liquid water content of aerosols. Aerosol Science and Technology 27, 50-61.
Sporre, M.K., Blichner, S.M., Schrödner, R., Karset, I.H., Berntsen, T.K., Noije, T.v., Bergman, T., O′donnell, D., Makkonen, R., 2020. Large difference in aerosol radiative effects from BVOC-SOA treatment in three Earth system models. Atmospheric Chemistry and Physics 20, 8953-8973.
Stanier, C.O., Khlystov, A.Y., Chan, W.R., Mandiro, M., Pandis, S.N., 2004. A Method for the In Situ Measurement of Fine Aerosol Water Content of Ambient Aerosols: The Dry-Ambient Aerosol Size Spectrometer (DAASS) Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology 38, 215-228.
Stolzenburg, M., McMurry, P., 1988. TDMAFIT User’s Manual, Particle Technology Laboratory, Department of Mechanical Engineering. University of Minnesota, Minneapolis, MN, USA.
Tan, H., Xu, H., Wan, Q., Li, F., Deng, X., Chan, P.W., Xia, D., Yin, Y., 2013. Design and application of an unattended multifunctional H-TDMA system. Journal of Atmospheric and Oceanic Technology 30, 1136-1148.
Tan, W., Yu, Y., Li, C., Li, J., Kang, L., Dong, H., Zeng, L., Zhu, T., 2020. Profiling aerosol liquid water content using a polarization lidar. Environmental Science and Technology 54, 3129-3137.
Tang, I., Fung, K., Imre, D., Munkelwitz, H., 1995. Phase transformation and metastability of hygroscopic microparticles. Aerosol Science and Technology 23, 443-453.
Tang, I.N., 1996. Chemical and size effects of hygroscopic aerosols on light scattering coefficients. Journal of Geophysical Research: Atmospheres 101, 19245-19250.
Tsai, Y.I., Kuo, S.-C., 2005. PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839.
Wexler, A.S., Seinfeld, J.H., 1991. Second-generation inorganic aerosol model. Atmospheric Environment. Part A. General Topics 25, 2731-2748.
Widziewicz-Rzońca, K., Tytła, M., 2020a. First systematic review on PM-bound water: exploring the existing knowledge domain using the CiteSpace software. Scientometrics 124, 1945-2008.
Widziewicz-Rzońca, K., Tytła, M., 2020b. Water Sorption by Different Types of Filter Media Used for Particulate Matter Collection Under Varying Temperature and Humidity Conditions. International Journal of Environmental Research and Public Health 17, 5180.
Wong, J.P., Lee, A.K., Abbatt, J.P., 2015. Impacts of sulfate seed acidity and water content on isoprene secondary organic aerosol formation. Environmental Science and Technology 49, 13215-13221.
Xu, Y., Miyazaki, Y., Tachibana, E., Sato, K., Ramasamy, S., Mochizuki, T., Sadanaga, Y., Nakashima, Y., Sakamoto, Y., Matsuda, K., 2020. Aerosol liquid water promotes the formation of water-soluble organic nitrogen in submicrometer aerosols in a suburban forest. Environmental Science and Technology 54, 1406-1414.
Zhang, X., Murakami, T., Wang, J., Aikawa, M., 2021. Sources, species and secondary formation of atmospheric aerosols and gaseous precursors in the suburb of Kitakyushu, Japan. Science of The Total Environment 763, 143001.
指導教授 李崇德(Chung-Te Lee) 審核日期 2022-11-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明