博碩士論文 109323026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.221.15.15
姓名 李承勳(Cheng-Hsun Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 長焦光斑紅外飛秒雷射脈衝光之玻璃/玻璃焊接研究
(Study on Glass/Glass Welding using Long Focal Spot NIR Femtosecond Laser Pulses)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 玻璃因其穩定的物理及化學特性,在生物醫學、航太、微電子以及半導體等不同的領域中得到廣泛的應用。在各個領域都會碰到玻璃接合的問題,如半導體中對電子元件的封裝等。在傳統的玻璃接合中,幾乎所有方法都難以提供高效率以及高經濟效益所需的精度、黏合品質以及生產速度。近年來,隨著激光技術的進步,通過脈衝激光實現玻璃局部焊接變得越來越容易。 此外,利用玻璃對超快脈衝激光的非線性吸收機制,也可實現了兩片玻璃界面的雷射透射焊接。
在脈衝式雷射的加工系統中,其光路安排可分為短焦物鏡系統與長焦振鏡系統。短焦的物鏡系統將雷射光聚焦於較小的尺度範圍內,對材料的處理範圍較小,且光與材料的相對運動僅能依靠平台移動,無法有效地提高焊接效率。而長焦振鏡系統則透過兩壓電片驅動兩反射鏡,再以場鏡聚焦,可有效、快速地以掃描的方式進行圖案化之焊接。本研究在不使用任何夾治具下,使用振鏡系統對玻璃進行焊接,與短焦物鏡系統相比,雖然對原材料的改變範圍較大,但焊接的速度卻可有效地提高。本研究同時也對不同焊接參數組做討論,透過強度測試找出最佳參數組,結果顯示,剪應力強度在能量為9 W且線距為25 μm時可以得到最好的強度,80.52 MPa,而拉應力則是在7 W與線距25 μm得到最佳強度,11.29 MPa。藉由焊接點之橫截面觀察,發現對於剪應力的破壞是由兩片玻璃之間進行破裂,而拉應力則是在熔融區域的下緣與下片玻璃間產生分離。本文也透過高速攝像機觀察接合過程中焊接截面的外形演變,同時整合了文獻上的報導,對玻璃與玻璃的雷射接合過程做更完整的闡述。
摘要(英) Due to its stable physical and chemical properties, glass is widely used in different fields such as biomedicine, aerospace, microelectronics, and semiconductors. The problem of glass bonding is encountered in various fields, particularly for packaging in electronics, optronics, and semiconductors. In the literature, there have been several methods reported for glass-to-glass welding, however, most of them are difficult to simultaneously provide the precision, weld quality, and production speed required for high efficiency and high economic benefits. Recently, with the advancement of laser technology, it has become easier to achieve localized welding of glass with pulsed lasers. In addition, the nonlinear absorption mechanism of an ultrafast pulsed laser by the glass can also be used to realize laser transmission welding at the interface of two pieces of glass.
In the pulsed laser processing system, its optical path arrangement can be divided into a short-focus objective lens system and a long-focus galvanometer system. The former focuses the laser light on a smaller spot, and the relative movement of the light and the material can only rely on the movement of an X-Y table, which cannot effectively improve the welding efficiency. For the latter, the incoming laser light is aligned through two reflectors agitated by two piezo plates and focusing through an f-theta lens. Consequently, patterning welding can be effectively achieved. In this study, the galvanometer system is used to weld the glass and glass without us-ing any fixtures. Compared with the short-focus objective lens system, although the welding range of raw materials is larger, the welding speed can be effectively improved. This study also tests different process parameter sets and finds out the relative best set through strength tests of the welds. Results show that the highest shear stress could achieve was 80.52 MPa when the processing laser power was 9 W and the scanning line space was 25 μm. The highest available tensile stress was 11.29 MPa at the power of 7 W and the scanning line space of 25 μm. Through the observation of the cross-section of the weld spot, it was found that the damage to the shear stress was caused by the crack between the two glass pieces, while the separation by tensile stress occurred between the lower edge of the molten and the lower glass. This study al-so usds a high-speed camera to observe the evolution of the weld during the bonding and, com-bined with reports in the literature, provided a complete description of the glass-to-glass laser bonding process.
關鍵字(中) ★ 玻璃-玻璃接合
★ 飛秒雷射焊接
★ 長焦振鏡系統
★ 剪應力測試
★ 拉應力測試
關鍵字(英) ★ glass-glass bonding
★ femtosecond laser welding
★ galvanomether system
★ shear stress testing
★ tensile stress testsing
論文目次 中文摘要 i
Abstract ii
Contents iv
List of figures vii
List of tables xiii
Chapter 1 緒論 1
1.1 背景 1
1.2 研究動機與目的 2
Chapter 2 文獻回顧 4
2.1 玻璃焊接歷史與其相關原理 4
2.1.1 傳統接合 5
2.1.2 雷射焊接 7
2.2 超快脈衝雷射玻璃焊接 11
2.2.1 物鏡系統焊接 13
2.2.2 長焦振鏡系統 18
2.2.3 空氣間隙對玻璃焊接之影響 22
2.3 傳承與創新 24
Chapter 3 實驗步驟與方法 25
3.1 實驗架構與流程 25
3.2 樣品製備 25
3.3 雷射加工 26
3.4 雷射焊接玻璃強度量測 29
3.5 量測儀器介紹 34
3.5.1 xyztec sigma微焊點接合強度試驗機 34
3.5.2 Keyence 雷射共軛焦顯微鏡 34
3.6 實驗儀器設備清單 35
Chapter 4 結果與討論 37
4.1 雷射玻璃焊接之過程與機制 38
4.1.1 聚焦位置對玻璃焊接之影響 44
4.2 雷射玻璃焊接強度量測 47
4.2.1 剪應力(shear)量測之結果 49
4.2.2 拉應力(tensile)量測之結果 56
4.3 雷射玻璃焊接拉應力與剪應力強度比較 59
Chapter 5 結論 67
參考文獻 68
碩士論文口試教授問題集 71
參考文獻 [1] L. Granados et al., "Silicate glass-to-glass hermetic bonding for encapsulation of next-generation optoelectronics: A review," Materials Today, vol. 47, pp. 131-155, 2021, doi: 10.1016/j.mattod.2021.01.025.
[2] K. Cvecek, S. Dehmel, I. Miyamoto, and M. Schmidt, "A review on glass welding by ultra-short laser pulses," International Journal of Extreme Manufacturing, vol. 1, no. 4, 2019, doi: 10.1088/2631-7990/ab55f6.
[3] M. Gstalter, G. Chabrol, A. Bahouka, K. D. Dorkenoo, J. L. Rehspringer, and S. Lecler, "Long focal length high repetition rate femtosecond laser glass welding," Appl Opt, vol. 58, no. 32, pp. 8858-8864, Nov 10 2019, doi: 10.1364/AO.58.008858.
[4] "Advances of Laser Welding Technology of Glass -Science and Technology," Journal of Laser Micro/Nanoengineering, 2020, doi: 10.2961/jlmn.2020.02.1001.
[5] K. Sleiman, M. Legutko, K. Rettschlag, P. Jäschke, L. Overmeyer, and S. Kaierle, "CO2 laser based welding of borosilicate glass by Laser Glass Deposition," Procedia CIRP, vol. 111, pp. 466-469, 2022.
[6] S. S. Ham et al., "Jig-free laser welding of Eagle XG glasses by using a picosecond pulsed laser," Journal of Mechanical Science and Technology, vol. 33, no. 6, pp. 2825-2832, 2019, doi: 10.1007/s12206-019-0529-1.
[7] I. Miyamoto, "Laser welding of glass," in Handbook of Laser Welding Technologies, 2013, pp. 301-331.
[8] F. Veer, Janssen, M. , and T. Nägele, "The possibilities of glass bond adhesives," transition, vol. 19, no. 23, p. 40, 2005.
[9] B. Goss, "Bonding glass and other substrates with UV curing adhesives," International journal of adhesion and adhesives, vol. 22, no. 5, pp. 405-408, 2002.
[10] M. M. R. Howlader, S. Suehara, and T. Suga, "Room temperature wafer level glass/glass bonding," Sensors and Actuators A: Physical, vol. 127, no. 1, pp. 31-36, 2006, doi: 10.1016/j.sna.2005.11.003.
[11] A. Berthold, L. Nicola, P. Sarro, and M. Vellekoop, "Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers," Sensors and Actuators A: Physical, vol. 82, no. 1-3, pp. 224-228, 2000.
[12] Z.-J. Jia, Q. Fang, and Z.-L. Fang, "Bonding of glass microfluidic chips at room temperatures," Analytical chemistry, vol. 76, no. 18, pp. 5597-5602, 2004.
[13] T. Izawa, N. Shibata, and A. Takeda, "Optical attenuation in pure and doped fused silica in the ir wavelength region," Applied Physics Letters, vol. 31, no. 1, pp. 33-35, 1977, doi: 10.1063/1.89468.
[14] A. de Pablos-Martín and T. Höche, "Laser welding of glasses using a nanosecond pulsed Nd:YAG laser," Optics and Lasers in Engineering, vol. 90, pp. 1-9, 2017, doi: 10.1016/j.optlaseng.2016.09.009.
[15] S. Richter, S. Nolte, and A. Tünnermann, "Ultrashort Pulse Laser Welding - A New Approach for High- Stability Bonding of Different Glasses," Physics Procedia, vol. 39, pp. 556-562, 2012, doi: 10.1016/j.phpro.2012.10.073.
[16] T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, "Welding of Transparent Materials Using Femtosecond Laser Pulses," Japanese Journal of Applied Physics, vol. 44, no. No. 22, pp. L687-L689, 2005, doi: 10.1143/jjap.44.L687.
[17] I. Miyamoto, "Fusion Welding of Glass Using Femtosecond Laser Pulses with High-repetition Rates," Journal of Laser Micro/Nanoengineering, vol. 2, no. 1, pp. 57-63, 2007, doi: 10.2961/jlmn.2007.01.0011.
[18] I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, "Novel fusion welding technology of glass using ultrashort pulse lasers," Physics Procedia, vol. 5, pp. 483-493, 2010, doi: 10.1016/j.phpro.2010.08.171.
[19] H. Tan and J. a. Duan, "One-step femtosecond laser welding and internal machining of three glass substrates," Applied Physics A, vol. 123, no. 5, 2017, doi: 10.1007/s00339-017-0996-0.
[20] H. Chen, L. Deng, J. Duan, and X. Zeng, "Picosecond laser welding of glasses with a large gap by a rapid oscillating scan," Optics letters, vol. 44, no. 10, pp. 2570-2573, 2019.
[21] H. Tan, Y. Zhang, Y. Liu, and X. Fu, "Two-layer vertical welding of glasses by femtosecond laser through galvo scanner," Journal of Optics, vol. 49, no. 3, pp. 408-415, 2020, doi: 10.1007/s12596-020-00635-1.
[22] K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, "Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength," Applied optics, vol. 50, no. 13, pp. 1941-1944, 2011.
[23] M. Kahle and D. Nodop, "Glass welding with ultra-short laser pulses and long focal lengths A process model," Procedia CIRP, vol. 111, pp. 617-620, 2022, doi: 10.1016/j.procir.2022.08.163.
[24] V. Greco, F. Marchesini, and G. Molesini, "Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates," Journal of Optics A: Pure and Applied Optics, vol. 3, no. 1, p. 85, 2001.
[25] J. Zhang et al., "The effect of gap on the quality of glass-to-glass welding using a picosecond laser," Optics and Lasers in Engineering, vol. 134, 2020, doi: 10.1016/j.optlaseng.2020.106248.
[26] J. Chen, R. M. Carter, R. R. Thomson, and D. P. Hand, "Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding," Opt Express, vol. 23, no. 14, pp. 18645-57, Jul 13 2015, doi: 10.1364/OE.23.018645.
[27] H. Tan and J. a. Duan, "Welding of glasses in optical and partial-optical contact via focal position adjustment of femtosecond-laser pulses at moderately high repetition rate," Applied Physics A, vol. 123, no. 7, 2017, doi: 10.1007/s00339-017-1079-y.
[28] KEYENCE. "Laser scanning confocal microscope." https://www.keyence.com/ss/products/microscope/glossary/cat2/laser_scanning_confocal_microscopes/
[29] B. W. Darvell, "Mechanical Testing," in Materials Science for Dentistry, 2018, pp. 1-39.
[30] J. Lonzaga, S. Avanesyan, S. Langford, and J. Dickinson, "Color center formation in soda-lime glass with femtosecond laser pulses," Journal of applied physics, vol. 94, no. 7, pp. 4332-4340, 2003.
[31] R. E. Russo, X. L. Mao, C. Liu, and J. Gonzalez, "Laser assisted plasma spectrochemistry: laser ablation," Journal of Analytical Atomic Spectrometry, vol. 19, no. 9, 2004, doi: 10.1039/b403368j.
[32] T. D. Bennett, D. J. Krajnovich, L. Li, and D. Wan, "Mechanism of topography formation during CO2 laser texturing of silicate glasses," Journal of Applied Physics, vol. 84, no. 5, pp. 2897-2905, 1998, doi: 10.1063/1.368396.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2023-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明