博碩士論文 109323066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.220.1.239
姓名 蔡育林(Yu-Lin Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 線鋸 4H-SiC 晶圓表面之雷射處理及其研磨特性研究
(Characterization of Laser-processed and Subsequently Ground Surfaces of Wire-sawed 4H-SiC Wafer)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 碳化矽做為第三代半導體的核心材料,相較於目前使用率最高的矽晶圓,在熱導率、帶隙、擊穿電壓等,有更加優異的特性,可作為高溫、高壓、高頻與高功率元件的半導體材料。但碳化矽除了高帶隙外,其材料特性包含高化學穩定性、高硬度等,使得碳化矽晶圓的生產過程繁複且困難,其中如何提升切割、研磨、拋光效率仍是極具挑戰性。本研究以飛秒雷射加工線切割後的Semi 4H-SiC,試圖將其表面上的缺陷及線鋸痕去除,同時探討碳化矽不同極性面,碳面與矽面的加工差異。本研究首先觀察線切割所造成的表面缺陷及內部微裂痕,再以不同雷射參數進行表面處理測試,在能量密度(Fluence, F) 3.51 J/cm2與脈衝重疊率 (Pulse Overlapping, PO) 96.96%下,透過研磨結果顯示,可獲得粗糙度Ra為0.002 m、高差Rz為0.124 m的表面形貌,相比起未加工試片Ra為0.134 m、高差Rz為3.661 m差異極大。本研究也發現於不同掃描重疊率下,試片粗糙度及高差並無明顯變化,因此可選用低掃描重疊率進一步提升加工效率及降低材料損耗。而本研究也發現雷射加工不同極性面時,其研磨後形貌差異很大,推測是加工過程中兩極性面的氧化程度不同所致。使用不同的雷射加工參數,無論是改變掃描次數或是改變能量密度,碳面的氧化物沉積層皆厚於矽面,且隨著雷射削蝕能量的上升,兩極性面的差距也隨之擴大,較薄的氧化沉積層厚度使得矽面加工後坑洞較碳面深,因而矽面無法在相同研磨條件下獲得與碳面相同的奈米級、低粗糙度表面。
摘要(英) As one of the core materials of the third-generation semiconductor, silicon carbide (SiC) has several unique properties such as high thermal conductivity, wide band gap, and large breakdown voltage. These excellent characteristics make it to be very promising for high-frequency and high-power components. However, its extreme chemical stability and high hardness also pose great challenges in the fabrication of SiC wafers. This study uses a femtosecond laser to remove the remained defects and marks on the Semi 4H-SiC surface after the wire saw cutting process. At the same time, the differences in laser machining characteristics of different SiC polar surfaces, the carbon face and the silicon face, were also studied. First, the wire-sawed surface defects and internal micro-cracks were observed, and then the results of the machined surface were examined with different laser processing parameters. Under the process parameters of laser fluence (F) of 3.51 J/cm2 and the pulse overlapping (PO) of 96.96%, the grinding results showed that a good surface morphology, with a roughness of Ra of 0.002 m and a height difference of Rz of 0.124 m, could be achieved. When compared with that of the unprocessed specimens, where the Ra was 0.134 m and Rz was 3.661 m, there was a significant improvement in grinding performance. This study also showed that both Ra and Rz did not change significantly under different POs. Therefore, a lower PO can be employed to further improve processing efficiency and reduce material loss. It was also observed that when laser processing different polar surfaces, the morphology after grinding was very different. It is speculated this was due to the different oxidation degrees of the two polar faces after laser processing. Using different laser processing parameters, regardless of changing the scanning cycles or varying the fluence, the oxide deposition layer on the carbon face was thicker than that on the silicon face, and with the increase of laser fluence, the morphology difference of the two faces also expanded. The thinner oxide deposition layer made the silicon face have deeper pits than that of the carbon face after laser processing. Therefore, under the same grinding conditions, the silicon face could not achieve the same nano-scale, low-roughness surface as that of the carbon face.
關鍵字(中) ★ 碳化矽
★ 碳面
★ 矽面
★ 表面缺陷
★ 研磨
★ 雷射表面削蝕
關鍵字(英) ★ silicon carbide
★ carbon face
★ silicon face
★ surface defects
★ grinding
★ laser surface ablation (ablation)
論文目次 中文摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 緒論 1
1.1 背景 1
1.2 研究動機及目的 3
Chapter 2 文獻回顧 5
2.1 碳化矽 5
2.2 雷射機制 9
2.3 碳化矽表面處理機制 12
Chapter 3 實驗設置及方法 14
3.1 實驗架構及流程 14
3.2 樣本製備 15
3.2.1 樣品預處理 15
3.2.2 雷射加工及系統 15
3.2.3 試片鑲埋及切片 16
3.2.4 機械研磨 16
3.2.5 化學蝕刻 17
3.3 實驗細節 17
3.3.1 飛秒雷射系統 17
3.3.2 雷射實驗設置 18
3.3.3 雷射加工參數說明 19
3.3.4 研磨加工設置及參數 21
3.4 量測儀器介紹 21
3.4.1 雷射共軛焦顯微鏡( Laser Scanning Confocal Microscope, LSCM ) 21
3.4.2 場發射掃描式電子顯微鏡 ( Scanning Electron Microscope, SEM ) 22
3.5 實驗儀器介紹 23
Chapter 4 結果與討論 25
4.1 原始線切割碳化矽表面損傷層 26
4.2 雷射參數對於表面形貌及結構變化 28
4.2.1 不同能量密度對於表面形貌及結構變化(power) 28
4.2.2 不同脈衝重疊率對於表面形貌及結構變化 31
4.2.3 不同掃描重疊率對於表面形貌及結構變化 32
4.3 研磨後表面形貌及結構變化 33
4.4 不同極性面加工探討 42
4.4.1 相同雷射參數下碳-矽面結構 42
4.4.2 不同掃描次數下碳-矽面結構變化 46
4.4.3 不同能量密度下碳-矽面結構變化 49
Chapter 5 結論 53
文獻回顧 55
碩士論文口試教授問題集 58
參考文獻 [1] Yole. " SiC device market growing at 34% CAGR from $1.09bn in 2021 to $6.3bn in 2027. Semiconductor Today", 2022/4/4 .Power SiC 2022.
[2] CRC Handbook of Chemistry and Physics 97th Edition. 2016-06-24: 4–84. ISBN 1-4987-5428-
[3] Patnaik, P. Handbook of Inorganic Chemicals. McGraw-Hill. 2002. ISBN 0-07-049439-8.
[4] Kwasnicki, Pawel. Evaluation of doping in 4H-SiC by optical spectroscopies. Diss. Université Montpellier II-Sciences et Techniques du Languedoc, 2014.
[5] Mehregany, Mehran, et al. "Silicon carbide MEMS for harsh environments." Proceedings of the IEEE 86.8 (1998): 1594-1609.
[6] Morkoc, B. H., et al. "Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies." Journal of Applied physics 76.3 (1994): 1363-1398.
[7] Yamamura, Kazuya, et al. "High-integrity finishing of 4H-SiC (0001) by plasma-assisted polishing." Advanced Materials Research. Vol. 126. Trans Tech Publications Ltd, 2010.
[8] Yuan, Zewei, et al. "UV-TiO2 photocatalysis-assisted chemical mechanical polishing 4H-SiC wafer." Materials and Manufacturing Processes 33.11 (2018): 1214-1222.
[9] Deng, Hui, et al. "Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry." Electrochemistry Communications 52 (2015): 5-8.
[10] Arima, Kenta, et al. "Atomic-scale flattening of SiC surfaces by electroless chemical etching in HF solution with Pt catalyst." Applied Physics Letters 90.20 (2007): 202106.
[11] Van Dorp, D. H., et al. "Electrochemistry of anodic etching of 4H and 6H–SiC in fluoride solution of pH 3." Electrochimica acta 54.26 (2009): 6269-6275.
[12] Chen, Gaopan, et al. "One-step fabrication of fine surfaces via femtosecond laser on sliced SiC." Materials Science in Semiconductor Processing 132 (2021): 105926.
[13] Yang, Xu, et al. "Highly efficient planarization of sliced 4H–SiC (0001) wafer by slurryless electrochemical mechanical polishing." International Journal of Machine Tools and Manufacture 144 (2019): 103431.
[14] Chen, Gaopan, et al. "Surface modulation to enhance chemical mechanical polishing performance of sliced silicon carbide Si-face." Applied Surface Science 536 (2021): 147963.
[15] Lu, Jing, et al. "Removal mechanism of 4H-and 6H-SiC substrates (0001 and 000 1) in mechanical planarization machining." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233.1 (2019): 69-76.
[16] XIAO, Shiyu. High quality 4H-SiC crystal growth and dislocations behavior during solution method. Diss. 名古屋大学, 2016.
[17] Birnba µm, Milton. "Semiconductor surface damage produced by ruby lasers." Journal of Applied Physics 36.11 (1965): 3688-3689.
[18] Yamaguchi, Makoto, et al. "Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC." Applied Physics A 99.1 (2010): 23-27.
[19] Obara, Go, et al. "Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses." Optics Express 21.22 (2013): 26323-26334.
[20] Wang, Chengwu, et al. "Surface morphology evolution induced by multiple femtosecond laser ablation on 4H-SiC substrate and its application to CMP." ECS Journal of Solid State Science and Technology 6.12 (2017): P853.
[21] Xie, Xiaozhu, et al. "Femtosecond laser modification of silicon carbide substrates and its influence on CMP process." Ceramics International 47.10 (2021): 13322-13330.
[22] Lee, H. S., et al. "Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry (MAS)." CIRP annals 59.1 (2010): 333-336.
[23] Yin, Tao, et al. "Effect of Using High-Pressure Gas Atmosphere with UV Photocatalysis on the CMP Characteristics of a 4H-SiC Substrate." ECS Journal of Solid State Science and Technology 10.2 (2021): 024010.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2023-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明