博碩士論文 107383001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.223.195.20
姓名 林暐捷(Wei-Jie Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 脈衝式金屬有機化學氣相沉積脈衝持續時間對傳輸現象之數值分析
(Numerical Analysis of the Relation Between Pulse Time and Transport Phenomena in Pulsed Metal-Organic Chemical Vapor Deposition)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 三族氮化物半導體材料因為優秀的導熱性及電性成為未來高頻率電子元件相當重
要的材料,其中氮化鋁(AlN)是三族氮化物材料當中晶格常數最接近碳化矽且能隙最大
的材料,這使得氮化鋁不僅可以做為基板與三族氮化物薄膜間的緩衝層,同時也是許多
半導體元件重要的材料。由於 AlN 的製程過程會產生大量奈米微粒,進而影響薄膜品
質,為了提升三族氮化物半導體元件的效能,利用脈衝法降低製程中的奈米微粒以及控
制薄膜成核方向是未來此類電子元件發展重要的一環。相較於連續金屬有機化學氣相沉
積(MOCVD),脈衝式 MOCVD 製程中脈衝的開啟與關閉會導致腔體內的傳輸現象變得
相當複雜,難以找到最佳的製程條件。
本研究參考流場較穩定的單通道水平式腔體,建立包含流體力學、熱傳、質傳以及
化學反應的數值模型,藉此觀察脈衝式金屬有機化學氣相沉積製程中的傳輸現象,並分
析不同脈衝持續時間對傳輸現象及薄膜沉積的影響。結果顯示腔體中的速度邊界層會使
III 或 V pulse 的邊界凸向下游,而 III pulse 的凸出率大於 V pulse 是因為 TMAl 的擴散
速度較慢、速度邊界層內外的質傳速率差異較大所致,這是導致不同時間進入腔體的前
驅物依然會互相混合形成奈米微粒的主要原因。而載盤表面 TMAl 及 NH3 的質量分率會
在 III pulse 及 V pulse 開啟 0.15 秒後達到穩定,因此對於脈衝長度超過 0.15 秒之 III pulse
及 V pulse,持續時間改變對腔體中的傳輸現象影響不大,但腔體中 TMAl 及 NH3 的濃
度隨著 H2 pulse 持續時間增加而緩慢下降,這使得 H2 pulse 的持續時間對減緩微粒產生
效果顯著。
最後,在抑制奈米微粒的優勢與拉長製程時間的缺點相互競爭之下,為了找到最佳
脈衝持續時間取得最高沉積速率,在固定 TMAl 用量的情況下,首先參考低 V/III 比的
製程可以有效找出不同脈衝時間下的最高沉積速率,最後配合 V/III 比增加對沉積速率
的負面效應,便可預測不同 V/III 比下的最高沉積速率與相對應的脈衝持續時間。
摘要(英) Because of high thermal conductivity and outstanding electric properties, III nitride
semiconductor materials become one of the most important materials for the application of the
high-frequency device and deep ultraviolet LED. Among all III-nitride materials, AlN has the
highest bandgap. It makes the AlN can be applied not only as an extraordinary buffer layer
between group III nitride film and substrate but also as the active layer of UV LED and a barrier
layer of HEMT. To improve the performance of III-nitride devices and reduce the cost of
production, controlling the generation of nano-particle and the direction of the nucleation is
crucial in the semiconductor industry. Compared to the traditional continuous MOCVD process,
the transport phenomenon is more complicated in pulsed MOCVD because of the sequence of
different pulses during the process.
A numerical model is built to observe the relationship between the transport phenomenon,
chemical reaction, and deposition rate. The result shows that a slower mass transportation rate
in the velocity boundary layer near the wall or substrate can make the shape of III or V pulse
convex downstream. Moreover, the convexity of the interface of the III pulse increases faster
than that of the V pulse because of the lower mass diffusion coefficient of TMAl. On the other
hand, the mass fraction of TMAl or NH3 becomes stable 0.15 s after the III pulse or V pulse
starts. But it takes massive time to make the mass fraction of TMAl and NH3 near the substrate
back to zero because the mass diffusion rate is slow. The pulsed time for the H2 pulse can affect
the chemical reaction between the TMAl and NH3 more than the pulsed time of the III or V
pulse. By increasing the pulsed time of the H2 pulse, the generation of AlN nano-particle can
be suppressed and the usage of the TMAl source can be improved. However, it also makes the
process time increase. A method to find the best compromise between suppressing the
generation of AlN and the shortening process is proposed. The method to estimate the maximum
deposition rate for different V/III ratios is also presented.
關鍵字(中) ★ 數值分析
★ 脈衝式金屬有機化學氣相沉積
★ 氮化鋁
關鍵字(英) ★ numerical analysis
★ pulsed MOCVD
★ AlN
論文目次 摘要.......................................................................................................................................................... i
Abstract ................................................................................................................................................... ii
目錄........................................................................................................................................................ iv
圖目錄.................................................................................................................................................... vi
表目錄.................................................................................................................................................. viii
符號表.................................................................................................................................................... ix
第一章 前言 ........................................................................................................................................1
1.1 III 族氮化物的材料性質與應用(AlN)..................................................................................1
1.2 金屬有機化學氣相沉積(MOCVD).......................................................................................1
1.3 脈衝式 MOCVD 製程............................................................................................................3
1.4 製程條件與沉積之關係 ........................................................................................................3
1.5 研究動機與目的 ....................................................................................................................6
第二章 研究方法 ..............................................................................................................................10
2.1 物理與數學模型 ..................................................................................................................10
2.2 網格與數值方法 ..................................................................................................................14
2.3 模型驗證 ..............................................................................................................................14
第三章 結果與討論 ..........................................................................................................................22
3.1 脈衝式 MOCVD 製程中的基本傳輸現象..........................................................................22
3.1.1 速度與溫度分布..............................................................................................................22
3.1.2 脈衝式製程與質傳..........................................................................................................23
3.1.3 脈衝轉換對前驅物傳輸之影響......................................................................................24
3.1.4 脈衝式製程中之寄生反應..............................................................................................25
3.2 脈衝製程參數對沉積速率及微粒生成之影響...................................................................28
3.2.1 H2 pulse 時間對製程之影響............................................................................................28
3.2.2 V/III 比對製程之影響.....................................................................................................28
3.2.3 固定 TMAl 流量不同 V/III 比與 H2 pulse 持續時間對沉積速率的影響 ..................29
結論........................................................................................................................................................55
參考文獻................................................................................................................................................57
參考文獻 1. M. Slomski, Thermal Conductivity of Group-III Nitrides and Oxides. doctoral dissertation,
North Carolina State University (2017).
2. S. Strite and H. Morkoc, GaN, AIN, and InN: A review. J. Vac. Sci. Technol. B 10(4), (1992)
1237-1266.
3. R. F. Davis, M. J. Paisley, Z. Sitar, D. J. Kester, K. S. Ailey, and C. Wang, Deposition of IIIN thin films by molecular beam epitaxy. J. Microelectron. 25 (1994) 661-674.
4. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic vapor phase epitaxial
growth of a high quality GaN film using an AIN buffer layer. Appl. Phys. Lett. 48 (1986)
353-355.
5. S. Zamir, B. Meyler, E. Zolotoyabko, and J. Salzman, The effect of AlN buffer layer on
GaN grown on (1 1 1)-oriented Si substrates by MOCVD. J. Crystal Growth 218 (2000)
181-190.
6. S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and
T. J. Jenkins, High-Power Microwave GaN/AlGaN HEMT’s on Semi-Insulating Silicon
Carbide Substrates. IEEEIEEE ELECTRON DEVICE LETTERS 20 (1999)161-163.
7. M. A. Mastro, C. R. Eddy Jr., D. K. Gaskill, N. D. Bassim, J. Casey, A. Rosenberg, R. T.
Holm, R. L. Henry, and M. E. Twigg, MOCVD growth of thick AlN and AlGaN superlattice
structures on Si substrates. J. Crystal Growth 287 (2006) 610–614.
8. D. Liu, S. J. Cho, J. Park, J. Gong, J-H Seo, R. Dalmau, D. Zhao, K. Kim, M. Kim, A. R.
K. Kalapala, J. D. Albrecht, W. Zhou, B. Moody, and Z. Ma1, 226 nm AlGaN/AlN UV
LEDs using p-type Si for hole injection and UV reflection. Appl. Phys. Lett. 113 (2018)
011111.
9. M. Ichikawa, A. Fujioka, T. Kosugi, S. Endo, H. Sagawa, H. Tamaki, T. Mukai, M. Uomoto,
58
and T. Shimatsu, High-output-power deep ultraviolet light-emitting diode assembly using
direct bonding. Appl. Phys. Express 9 (2016) 072101.
10. N. Yafune, S. Hashimoto, K. Akita, Y. Yamamoto, H. Tokuda and M. Kuzuhara, AlN/AlGaN
HEMTs on AlN substrate for stable high-temperature operation. ELECTRONICS
LETTERS 30th 50 (2014) 211–212.
11. O. Kovalenkov, V. Soukhoveev, V. Ivantsov, A. Usikov, and V. Dmitriev, Thick AlN layers
grown by HVPE. J. Crystal Growth 281 (2005) 87–92.
12. A. Kakanakova-Georgieva, R. R. Ciechonski, U. Forsberg, A. Lundskog, and E. Janzén,
Hot-Wall MOCVD for Highly Efficient and Uniform Growth of AlN. Cryst. Growth Des.
Vol. 9, No. 2, (2009) 880-884.
13. V. G. Mansurov, A. Yu. Nikitin, Yu. G. Galitsyn, S. N. Svitasheva, K. S. Zhuravlev, Z.
Osvath, L. Dobos, Z. E. Horvath, and B. Pecz, AlN growth on sapphire substrate by
ammonia MBE. J. Crystal Growth 300 (2007) 145–150.
14. H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, The Use of Metalorganics in the
Preparation of Semiconductor Materials: IV . The Nitrides of Aluminum and Gallium. J.
Electrochem. Soc. Vol. 118, No. 11(1971) 1864-1867.
15. S. Nakamura, Y. Harada, and M. Seno, Novel metalorganic chemical vapor deposition
system for GaN growth. Appl. Phys. Lett. 58 (1991) 2021-2023.
16. T. G. Mihopoulos, V. Gupta, K. F. Jensen, A reaction-transport model for AlGaN MOVPE
growth. J. Crystal Growth 195 (1998) 733-739.
17. D.G. Zhao, J.J. Zhu, D.S. Jiang, Hui Yang, J.W. Liang, X.Y. Li, and H.M. Gong, Parasitic
reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition.
J. Crystal Growth 289 (2006) 72–75.
18. L. Tang, R. Zuo, H. Zhang, Quantum chemical study on nanoparticles formation mechanism
n AlGaN MOCVD growth. J. Crystal Growth 525 (2019) 125201.
19. J. An, X. Dai, Q. Zhang, R. Guo, and L. Feng, Gas-phase chemical reaction mechanism in
59
the growth of AlN during High-Temperature MOCVD: A Thermodynamic Study. ACS
Omega 5 (2020) 11792-11798.
20. Y. Inagakiz and T. Kozawa, Chemical reaction pathways for MOVPE growth of aluminum
nitride. ECS Journal of Solid State Science and Technology, 5 (2) (2016) 73-75.
21. I. Demir, H. Li, Y. Robin, R. McClintock, S. Elagoz, and M. Razeghi, Sandwich method to
grow high quality AlN by MOCVD. J. Phys. Appl. Phys. 51 (2018) 085104.
22. İ. Demir, Y. Robin, R. McClintock, S. Elagoz, K. Zekentes, and M. Razeghi, Direct growth
of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy. Phys. Status Solidi
(A) 214 (2017) 1600363.
23. L. W. Sang, Z. X. Qin, H. Fang, T. Dai, Z. J. Yang, B. Shen, G. Y. Zhang, X. P. Zhang, J.
Xu, and D. P. Yu, Reduction in threading dislocation densities in AlN epilayer by
introducing a pulsed atomic-layer epitaxial buffer layer. Appl. Phys. Lett. 93 (2008) 122104.
24. R. S. Qhalid Fareed, R. Jain, R. Gaska, and M. S. Shur, High quality InN/GaN
heterostructures grown by migration enhanced metalorganic chemical vapor deposition.
Appl. Phys. Lett. 84 (2004) 1892.
25. R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, G. Tamulaitis, J. Mickevicius, R. Aleksiejunas,
M. S. Shur, and M. A. Khan, Migration enhanced MOCVD (MEMOCVDTM) buffers for
increased carrier lifetime in GaN and AlGaN epilayerson sapphire and SiC substrate. phys.
stat. sol. (c) 2, No. 7 (2005) 2095–2098.
26. Y. Chen, H. Song, D. Li, X. Sun, H. Jiang, Z. Li, G. Miao, Z. Zhang, and Y. Zhou, Influence
of the growth temperature of AlN nucleation layer on AlN template grown by hightemperature MOCVD. Materials Letters 114 (2014) 26–28.
27. H. Kröncke, S. Figge, T. Aschenbrenner, and D. Hommel, Growth of AlN by pulsed and
conventional MOVPE. J. Cryst. Growth 381 (2013) 100–106.
28. I. Streicher, S. Leone, L. Kirste, and O. Ambacher, Effect of V/III ratio and growth pressure
on surface and crystal quality of AlN grown on sapphire by metal-organic chemical vapor
60
deposition. J. Vac. Sci. Technol. A 40 (2022) 032702.
29. A.V. Lobanova, E.V. Yakovlev, R.A Talalaev, S.B. Thapa, F. Scholz, Growth conditions and
surface morphology of AlN MOVPE. J. Crystal Growth 310 (2008) 4935–4938.
30. W. Luo, L. Li, Z. Li, Q. Yang, D. Zhang, X. Dong, D. Peng, L. Pan, C. Li, B. Liu, and R.
Zhong, Influence of the nucleation layer morphology on the structural property of AlN films
grown on c-plane sapphire by MOCVD. J. Alloys and Compounds 697 (2017) 262-267.
31. J-S Yang, H. Sodabanlu, I. Waki, M. Sugiyama, Y. Nakano, and Y. Shimogaki, Process
design of the pulse injection method for low-temperature metal organic vapor phase
epitaxial growth of AlN at 800°C. J. Crystal Growth 311 (2009) 383-388.
32. K. Nakamura, A. Hirako, and K. Ohkawa, Analysis of pulsed injection of precursors in AlNMOVPE growth by computational fluid simulation. Phys. Status Solidi C 7, No. 7–8, (2010)
2268–2271.
33. D. Endres, S. Mazumder, Numerical investigation of pulsed chemical vapor deposition of
aluminum nitride to reduce particle formation. J. Crystal Growth 335 (2011) 42–50.
34. C. H. Chen, H. Liu, D. Steigerwald, W. Imler, C. P. Kuo, M. G. Craford, M. Ludowise, S.
Lester, and J. Amano, A study of parasitic reactions between NH3 and TMGa or TMAI.
Journal of Electronic Materials 25 (1996) 1004–1008.
35. P.D. Neufeld, A.R. Jenzen, R.A. Aziz, Empirical equation to calculate 16 of the transport
collision integrals Ω for the Lennard-Jones (12-6) potential, J. Chem. Phys. 57 (1972) 1100–
1102.
36. R.S. Brokaw, Predicting transport properties of dilute gases, Ind. Eng. Process Design
Develop 8 (1969) 240–253.
37. Computational fluid dynamics ACE+ suite, ESI Group, https://www.esi-group.com/
38. T.J. Mountziaris, K.F. Jensen, Gas-phase and surface reaction mechanisms in MOCVD of
GaAs with trimethyl-gallium and arsine, J. Electrochem. Soc. 138, No.8, (1991) 2426–2439.
39. A.V. Lobanova, K. M. Mazaev, R. A. Talalaev, M. Leys, S. Boeykens, K. Cheng, and S.
61
Degroote, Effect of V/III ratio in AlN and AlGaN MOVPE. J. Crystal Growth 287 (2006)
601-604.
40. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and
Mass Transfer, 6th ed., John Wiley & Sons, (2006).
41. COMSOL Multiphysics® www.comsol.com. COMSOL AB, Stockholm, Sweden
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2023-4-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明