博碩士論文 91322030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:122 、訪客IP:3.22.119.251
姓名 陳秉嵩(Ping-Sung Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 砂土層隧道之穩定性與土壓力分布
(Tunnel Stability and Earth Pressure Distribution When Tunneling in Sandy Ground)
相關論文
★ 砂土層中隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響★ 以離心模型試驗探討逆斷層作用下單樁與土壤互制反應
★ 攝影測量在離心模擬試驗之應用-以離心隧道模型之地表沉陷量量測為例★ 沉箱式碼頭受震反應的數值分析
★ 軟土隧道襯砌應力與地盤變位之數值分析★ 沉箱碼頭受震反應及側向位移分析
★ 潛盾隧道開挖面穩定與周圍土壓力之離心模擬★ 地理資訊系統應用於員林地區液化災損及復舊調查之研究
★ 黏性土層中隧道開挖引致之地盤沉陷及破壞機制★ 砂土層中通隧引致之地盤變位及其對既存基樁的影響
★ 既存隧道周圍土壓力受鄰近新挖隧道的影響★ 以攝影測量觀察離心土壩模型受滲流力作用之變位
★ 通隧引致鄰近基樁之荷重傳遞行為★ 潛盾施工引致之地盤沉陷案例分析
★ 以離心模型試驗探討高含水量黏性背填土 加勁擋土牆之穩定性★ 懸臂式擋土壁開挖之離心模型試驗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
位於軟弱土層中的隧道,由於盾尾間隙閉合引起應力釋放,會導致主應力方向旋轉產生地拱效應,使得隧道周圍土壓力分布改變。隧道周圍土壓力分布關係到隧道襯砌設計以及鄰近結構物之安全。因此,必須探討隧道開挖時隧道周圍之土壓力分布。
本研究利用離心模型試驗,探討砂土層中進行隧道鑽掘導致之土壓力分布的改變。以體積控制方式模擬土壤漏失量,分別探討(1)隧道崩垮過程中,不同土壤漏失量之隧道崩垮型態與破壞區發展過程。(2)探討隧道崩垮所導致之地拱效應,對於隧道周圍土壓力之影響,主要在釐清不同隧道土壤漏失量隧道周圍之土壓力分布型態。並且針對隧道側壁上方之水平土壓力進行研究,探討與隧道穩定性的關係。
研究結果顯示,隧道深徑比C/D=3的破壞是由隧道頂拱附近逐漸往地表擴展,頂拱上方破壞半寬度由隧道中心軸起算約為0.67D(D為隧道直徑)。地拱效應會造成有效垂直土壓力隨深度呈非線性分布,以距隧道中心水平距離1.17D~2D處之垂直土壓力受拱效應影響最大。並且塑性區發展趨勢為自隧道頂拱往地表擴展,但是未明顯往隧道兩側擴張,而拱效應主要影響區為隧道兩側距隧道中心2.5D範圍內。當隧道破壞之後,塑性區與拱效應主要影響區即不再向外擴展。而隧道側壁上方之有效水平土壓力,由於受到拱效應造成之影響,使得深度小於2.5D處皆增加;而深度大於2.5D則因為土壤進入塑性而降低。因此,造成隧道周圍土壤之側向土壓力係數隨深度而遞減,並非為一常數,因而於評估隧道穩定性時必須加以考慮地拱效應之影響。
摘要(英) The stress relaxation due to the closure of tail voids on tunnels in soft soils may cause the ground deformations. The soil deformations induced by tunneling will cause the stress rotations and changes on the distribution of earth pressure. The distribution of earth pressure around tunnel is essential for the design of tunnel lining and the safety of nearby structure. The variation of earth pressure around tunnel when tunneling are considerably complex and need to be studied in detail.
A series of centrifuge model tests were performed to assess tunneling-induced ground deformations in sandy ground and the variations of the distribution of earth pressure. Two topics were investigated by modeling the ground loss with the way of volume control in this study. First of all, the evolution of collapse of tunnel was analyzed in the cases of various ground losses. Secondly, the influence of the earth pressure on the arching effect was investigated to realize the earth pressure distributions in various ground losses. Furthermore, the horizontal earth pressures above the side walls of tunnel were analyzed to comprehend the stability of tunnel.
According to the result in the research, for the tunnel with the cover-to-diameter ratio of 3, the soil settlement zone grows from the tunnel axis level toward the ground surface and the half-width of settlement zone is about 0.67D (D=diameter of tunnel) away from tunnel central line. The extent of major arching zone is 2.5D from the tunnel central line. Moreover, the plastic zone grows from the tunnel axis level toward the ground surface and the plastic zone and major arching zone do not extend further even after the tunnel collapse. The arching effect causes the effective horizontal earth pressure above the tunnel side walls to decrease on the condition that the depth z is larger than 2.5D and to increase for z being smaller than 2.5D.
關鍵字(中) ★ 地盤變位
★ 土壤漏失
★ 隧道
★ 隧道穩定
★ 土壓力
關鍵字(英) ★ Earth pressure
★ Ground deformations
★ Ground loss
★ Tunnels
★ Tunnel stability
論文目次 中 文 摘 要------------------------------------I
英 文 摘 要------------------------------------II
目 錄-----------------------------------------IV
表 目 錄---------------------------------------VI
圖 目 錄---------------------------------------VII
照 片 目 錄------------------------------------XII
符 號 說 明------------------------------------XIII
第一章 緒論------------------------------------1
1-1 緣起---------------------------------------1
1-2 研究動機-----------------------------------2
1-3 研究架構-----------------------------------3
1-4 論文內容-----------------------------------4
第二章 文獻回顧--------------------------------8
2-1 軟地通隧引致之地盤沉陷---------------------8
2-1-1 地盤沉陷之原因---------------------------8
2-1-2 最大地表沉陷量和土壤漏失量---------------9
2-2 軟地單隧道開挖穩定分析---------------------13
2-2-1 軟地通隧之臨時支撐壓力-------------------13
2-2-2 砂土層中之離心隧道模型試驗---------------15
2-2-3 隧道拱效應理論---------------------------18
2-3 隧道開挖對土壓力分布影響之相關研究---------19
2-4 模擬隧道崩垮之控制方法---------------------23
2-4-1 體積控制模擬隧道崩垮---------------------23
2-4-2 壓力控制模擬隧道崩垮---------------------24
2-5 離心模型基本原理---------------------------25
2-5-1 離心模型之基本相似律---------------------25
2-5-2 離心模型試驗之模型模擬-------------------27
2-6 綜合相關文獻之啟發-------------------------29
第三章 試驗土樣、儀器設備及試驗方法------------57
3-1 試驗土樣-----------------------------------57
3-2 試驗儀器及相關設備-------------------------57
3-2-1 地工離心機-------------------------------57
3-2-2 模型試驗箱-------------------------------58
3-2-3 移動式霣降機 -----------------------------59
3-2-4 模型隧道---------------------------------60
3-2-5 土壤漏失量量測設備-----------------------60
3-2-6 其他量測工具-----------------------------61
3-3 模型製作及試體準備-------------------------62
3-3-1 微型土壓計之製作-------------------------62
3-3-2 試體製作---------------------------------63
3-3-3 位移標線計埋設、模型隧道及染色砂製作-----65
3-4 試驗方法與步驟-----------------------------66
3-5 石英細砂之內摩擦角-------------------------69
第四章 試驗結果與分析--------------------------99
4-1 模型試驗及試驗參數-------------------------99
4-2 微型土壓計與體積漏失量測儀校正-------------100
4-2-1 微型土壓計校正---------------------------100
4-2-2 隧道體積漏失量測儀校正-------------------101
4-3 離心模型試驗重複性之驗證-------------------102
4-4 通隧對地表沉陷與隧道周圍土壓力之影響-------103
4-4-1 地表沉陷---------------------------------104
4-4-2 隧道破壞型態-----------------------------108
4-4-3 隧道周圍垂直土壓力分布-------------------109
4-4-4 隧道側壁上方水平土壓力分布---------------115
4-5 隧道穩定分析-------------------------------117
第五章 結論與建議------------------------------163
5-1 結論---------------------------------------163
5-2 建議---------------------------------------166
參考文獻---------------------------------------168
附錄A------------------------------------------171
附錄B------------------------------------------174
參考文獻 [1]王繼勝等人,「潛盾工法與地表沉陷」,地工技術雜誌,第二十三期,第72-83頁(1988)。
[2]江國輝,「通隧引致鄰近基樁之荷重傳遞行為」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
[3]李崇正,林志棟,林俊雄,「大地工程研究者知新工具:離心模型試驗」,岩盤工程研討會論文集,中壢,第649-669頁(1994)。
[4]邱顯堯,「並行雙隧道變形之互制行為」,碩士論文,國立中央大學土木工程學系,中壢(1997)。
[5]周小文,「盾构隧道土压力离心模型试验及理论研究」,博士论文,清华大学水利水电工程系,北京 (1999)。
[6]莊孟翰,「未襯砌隧道壁變形引致地盤下陷分布形態分析」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
[7]陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,博士論文,國立中央大學土木工程學系,中壢(1999)
[8]郭家銘,「砂土層中通隧引致之地盤變位及其對既存基樁的影響」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
[9]Acutronic, Civil Engineering Centrifuge Model 665-1 Installation Manual 5941E, France (1992).
[10]Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H, France (1993).
[11]Atkinson, J.H., and Potts, D.M.,“Subsidence above shallow tunnels in soft ground,”Journal of Geotechnical Engineerimg, ASCE, Vol. 103,No. GT4, pp. 307-325 (1977).
[12]Chambon, P. and Corté, J.F.,“Shallow tunnels in cohesionless soil: stability of tunnel face,”Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 7, pp. 1148-1165 (1994).
[13]Chambon, P., Corté, J.F., and Garnier,J.,“Face stability of shallow tunnels in granular soils,”Proceedings, International Conference Centrifuge 91, Boulder, Colorado, pp. 99-105 (1991).
[14]Clough, G.W., and Schmidt, B.,“Design and performance of excavations and tunnels in soft clay,”In Soft Clay Engineering, pp. 600-634 (1981).
[15]Cording, E.J., and Hansmire, W.H.,“Displacement around soft ground tunnels,”Proc. 6th Panamerican Conf. On Soil Mechanics And Foundation Engineering, Buenon Aires, pp. 571-633 (1975).
[16]Davis, E.H., Gunn, M.J., Mair, R.J., and Seneviratne, H.N., “The stability of shallow tunnels and underground openings in cohesive material,” Geotechnique, Vol. 30, No. 4, pp. 397-416(1980).
[17]Fujita, K.,“Prediction of surface settlements caused by shield tunnelling,”Proceedings, International Conference on Soil Mechanics, Mexico, Vol. 1, pp. 239-246 (1982).
[18]Hoyaux, B., and Ladanyi, B.,“Gravitational stress field around a tunnel in soft ground,”Canadian Geotechnical Journal, Vol. 7, pp. 54-61(1969).
[19]Jacobsz, S.W., Standing, J.R., Mair, R.J., Hagieara, T., and Sugiyama, T., “Centrifuge modeling of tunneling near driven piles,”Soils and Foundations, Vol. 44, No. 1, pp. 49-56(2004).
[20]Lee, C.J.,Chiang, K.H., Kou, C.M.,”Ground movement and tunnel stability when tunneling in sandy ground,”Journal of the Chinese Institute of Engineers, Vol. 27, No. 7, pp. 1021-1032(2004).
[21]Lee, C.J., Wu, B.R., and Chiou, S.Y.,“Soil movements around a tunnel in soft soils,”Proc. Natl. Sci. Counc. ROC, series A, Vol. 25, No. 2, pp. 235-247 (1999).
[22]Longanathan, N., Poulos H.G., and Stewart, D.P.,“Centrifuge model testing of tunnelling-induced ground and pile deformations,”Geotechnique, Vol. 50, No. 3, pp. 283-294 (2000).
[23]Mair, R.J., Taylor, R.N., and Bracegirdie, A.,“Subsurface settlement profiles above tunnels in clays,”Geotechnique, Vol. 43, No. 2, pp. 315-320(1993).
[24]Nakai, T., Xu, L., and Yamazaki, H.,“3D and 2D model tests and numerical analyses of settlements and earth pressures due to tunnel excavation,”Soils and Foundations, Vol. 37, No. 3, pp. 31-42(1997).
[25]Park, S.H., and Adachi, T.,“Laboratory model tests and analyses on tunneling in the unconsolidated ground with inclined layers,”Tunnelling and Underground Space Technology, Vol. 17, pp. 181-193(2002).
[26]Sugiyama, H., and Goto, S.,”Evaluation of the earth pressure redistributeion around ECL tunnels,”Physical Modelling in Geotechnics:ICPMG ’02, Canada, pp. 785-790(2002).
[27]Terzaghi, K.,Theoretical Soil Mechanics, Jhon Wiley & Sons, New York, pp. 66-76(1943).
指導教授 李崇正(Chung-Jung Lee) 審核日期 2005-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明