博碩士論文 109352022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.226.251.68
姓名 蔣孟霖(Meng-Lin Jiang)  查詢紙本館藏   畢業系所 土木工程學系在職專班
論文名稱 添加 PET材料於密級配瀝青混凝土之 可行性評估
(Feasibility evaluation of adding PET material to dense-graded asphalt concrete)
相關論文
★ 公共工程統包模式執行專案成員間問題 之研究★ 水泥製程於資源再利用之研究
★ 防水毯的生管與品管之探討★ 建置生命紀念園區營運階段管理模式之研究 以新北市某民間公共紀念園區為例
★ 軍用機場跑道鋪面維護管理暨搶修作業機制之研究★ TAF 檢驗機構認證申請之研究- 以混凝土後置式化學錨栓檢驗為例
★ 利用UML建構實驗室資訊管理平台-以合約審查為例★ 營建施工管理導入即時性資訊傳遞工具功能需求之研究
★ 鋪面養護決策支援分析模式之研究★ 營建材料實驗室量測系統評估及誤差分析
★ 以績效為基礎的公路養護組織與機制之研究★ 智慧型鋪面檢測車平坦度量測驗證與應用
★ 公路設施養護管理程序建立及成本分析之研究-以IDEF方法建立鋪面養護作業程序★ 利用花崗岩及玻璃回收料製造功能性人造石材之研究
★ 自動化鋪面平整度量測分析與破壞影像偵測系統之研究★ 鋪面缺陷影像辨識系統應用於路網檢測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 寶特瓶的塑膠材料為聚對苯二甲酸乙二醇酯 (C10H8O4)n 是 熱塑性聚
酯 中最主要的品種,英文名為 Polyethylene terephthalate 簡稱 PET,俗稱滌
綸樹脂。 近年來 環保意識抬頭 由於 PET所產生之廢料無法降解,造成環
境汙染生態浩劫 。 寶特瓶回收再利用被過度美化,也造成國內寶特瓶使用
量長期居高不下,前年( 2021)更創下 11.5萬公噸、 52 億支的歷史新高,
相當於可塞滿 3 座半 101 大樓。
在國外已有將
PET用特殊脂肪酸溶解後以粉末狀改質劑投入瀝青混凝
土鋪面並鋪築成功之案例, 因此如何利用國外成 功的經驗作為基礎進而引
用至台灣鋪面研究開發實是目前當務之急。
本研究論文從高速公路選用常用之配合設計
DGAC、以及添加不同含
量 PET瀝青改質劑,瀝青採用 AC-20瀝青為基底之瀝青混凝土,以比對不
同含量之瀝青混凝土車轍成效評估。本研究將上述 PET添加至 DGAC內以
0.5%、 075%、 1%的添加量進行拌和,並測定試體是否符合所設定之空隙率
以再進行漢堡輪跡試驗為瀝青混凝土之成效試驗,藉此測試瀝青混凝土在
模擬現地車行的實際狀況。比較最終車轍深度與最終滾壓次數及沉陷量檢
討其抗車轍能力。
而另一項試驗用瀝青混合料塑性流
動阻力試驗 CNS 12395 A3293 (1988)試驗一般 DGAC與 3種不同添加含量之 PET進行馬歇爾配合設計法之最
適含油量,將四分法取出足夠重量之瀝青混合料,夯打馬歇爾試體完成後,
記錄高度是否達試體壓實後之最適高度為 63.5 1.3mm範圍內,且在達
夯壓溫度下限之時間,在進行馬歇爾之穩定值及流度值試驗。 (樣品從分樣
完成進夯打烘箱溫度至夯打完 成不可超過 2 小時 ) 以馬歇爾試體求得各
種 PET含量之瀝青混凝土之馬歇爾穩定值以比較最適含油量的瀝青混凝土
在不同 PET添加含量下破裂時力學行為變化,結果顯 示 DGAC 0%及 PET DGAC 0.5%、 075%和 1%四種級配之瀝青混凝土隨著加熱 PET添加量越多,
黏滯度增加其抗車轍能力越佳,進而說明路面抗車轍能力與 PET的添加量
有關,此外 漢堡輪跡試驗 中 DGAC 0%及 PET DGAC 0.5%、 075%和 1%雖
使用相同等級之膠泥 AC-20,但添加 PET改質劑之 DGAC抗車轍能力比
DGAC 0%更佳,這也說明除了與膠泥等級相同外, 漢堡輪跡試驗 亦明顯受
到 PET添加量之影響,最後將馬歇爾之穩定值之結果與 漢堡輪跡試驗 比較
結果顯示當 PET改質劑含量增加時其車轍深度累積將減 少,且馬歇爾之穩
定值試驗結果也隨著 PET改質劑含量增加使得黏滯度的上升而強度上升其
結果與 漢堡輪跡試驗 結果相同。
摘要(英) The plastic material of PET bottles is polyethylene terephthalate (C10H8O4)n, which is the most important variety of thermoplastic polyester. The English name is Polyethylene terephthalate, or PET for short, commonly known as polyester resin. In recent years, the awareness of environmental protection has risen. Since the waste produced by PET cannot be degraded, it has caused environmental pollution and ecological catastrophe. The recycling and reuse of plastic bottles has been overly beautified, which has also caused the use of domestic plastic bottles to remain high for a long time. The year before last (2021) hit a record high of 115,000 metric tons and 5.2 billion bottles, which is equivalent to filling three and a half 101 buildings .
There have been successful cases of dissolving PET with special fatty acid and putting it into asphalt concrete pavement with powdery modifier in foreign countries. Therefore, how to use the successful experience abroad as a basis and then apply it to the research and development of pavement in Taiwan is an urgent task at present. .
This research paper selects the commonly used combination design DGAC from the expressway, and adds different contents of PET asphalt modifier, and uses AC-20 asphalt as asphalt as the base asphalt concrete to compare the rutting effect evaluation of asphalt concrete with different contents. In this study, the above-mentioned PET was added to DGAC for mixing at 0.5%, 0.75%, and 1% additions, and whether the test body met the set porosity was determined, and then the wheel track test in Hamburg was used to test the effectiveness of asphalt concrete. This test asphalt concrete is simulating the actual conditions of the on-site vehicle. Compare the final rutting depth with the final rolling times and subsidence to evaluate its anti-rutting ability.
Another test uses the asphalt mixture plastic flow resistance test CNS 12395 A3293 (1988) to test the optimum oil content of the general DGAC and 3 kinds of PET with different additions in the Marshall fit design method, and take out enough weight of asphalt to mix with the quartering method After ramming the Marshall test body, record whether the height reaches the optimum height after compaction of the test body is within the range of 63.5 ± 1.3mm, and at the time when the lower limit of the tamping temperature is reached, the Marshall stability value and fluidity value are carried out test. (Samples should not exceed 2 hours from the completion of sample division to the temperature of the ramming oven to the completion of ramming) Marshall stability values of asphalt concrete with various PET contents were obtained using Marshall test
III
specimens to compare the optimum oil content of asphalt concrete with different PET content The mechanical behavior changes when it breaks. The results show that DGAC 0% and PET DGAC 0.5%, 0.75% and 1% asphalt concrete with four gradations increase with the addition of PET, the viscosity increases, and the anti-rutting ability is better. It shows that the anti-rutting ability of the road surface is related to the amount of PET added. In addition, DGAC 0% and PET DGAC 0.5%, 0.75% and 1% in the Hamburg wheel track test use the same grade of cement AC-20, but DGAC with PET modifier The anti-rutting ability is better than DGAC 0%, which also shows that in addition to the same grade as the cement, the wheel track test in Hamburg is also significantly affected by the amount of PET added. Finally, the results of Marshall′s stability value are compared with the wheel track test results in Hamburg. When the content of PET modifier increases, the accumulation of rutting depth will decrease, and the results of Marshall′s stability value test also increase with the increase of PET modifier content, the viscosity increases and the strength increases. The result is the same as the Hamburg wheel track test result.
關鍵字(中) ★ 密級配 (DGAC)
★ PET改質劑
★ 漢堡 輪跡試驗
關鍵字(英)
論文目次 目錄
目錄 ..................................................................................................................... V
圖目錄 .............................................................................................................. VII
表目錄 ............................................................................................................... IX
第一章 緒論 ........................................................................................................1
1.1 研究背景與動機 ...................................................................................1
1.2 研究目的 ...............................................................................................1
1.3 研究方法 ...............................................................................................2
1.4 研究流程 ...............................................................................................3
第二章 文獻回顧 ................................................................................................4
2.1 PET 材料性質探討 ............................................................................4
2.2 瀝青混凝土之老化 ............................................................................ 10
2.3 水分侵害對瀝青混凝土之影響 ....................................................... 12
2.3.1 水分侵害之因素 .................................................................... 12
2.4 漢堡輪跡試驗 .................................................................................... 13
2.5 瀝青混凝土車轍行為 ........................................................................ 18
2.6 車轍的原因及類型 ............................................................................ 21
2.6.1 評估瀝青混凝土抗變形能力 ................................................ 22
2.6.2 以配合設計結果評估 ............................................................ 22
2.6.3 成效評估試驗方法 ................................................................ 26
2.6.4 實驗室輪跡試驗儀 ................................................................ 27
2.6.5 輪跡試驗儀評做瀝青混凝土剝脫試驗 ................................ 29
第三章 研究方法與實驗設計......................................................................... 31
3.1 研究流程與試驗配置 ........................................................................ 31
3.2 材料基本性質試驗 ............................................................................ 33
3.2.1 粒料基本性質試驗 ................................................................ 34
3.2.2 瀝青基本性質試驗 ................................................................ 37
3.3 馬歇爾配合設計試驗結果 ............................................................... 42
VI 3.4 試體製作 ............................................................................................ 43
3.4.1 馬歇爾夯打試體 .................................................................... 43
3.4.2 馬歇爾穩定值與流度值試驗 ................................................ 45
3.4.3 SGC 旋轉壓實試驗 .............................................................. 47
3.5 PET 密級配瀝青混凝土耐久性能評估 ........................................ 48
3.5.1 間接張力試驗......................................................................... 48
3.5.2 浸水強度試驗......................................................................... 49
3.5.3 漢堡輪跡試驗......................................................................... 49
第四章 研究成果分析 ..................................................................................... 52
4.1 回收黏滯度試驗 ................................................................................ 52
4.2 馬歇爾穩定值與滯留強度試驗 ....................................................... 53
4.3 間接張力試驗 .................................................................................... 55
4.4 浸水強度試驗 .................................................................................... 56
4.5 漢堡輪跡試驗 .................................................................................... 58
4.6 試驗總結 ............................................................................................ 63
4.6.1 黏滯度與漢堡輪跡試驗 ........................................................ 63
4.6.2 馬歇爾穩定值與黏滯度 ........................................................ 64
4.6.3 馬歇爾穩定值與漢堡輪跡試驗 ............................................ 65
4.6.4 間接張力強度與黏滯度 ........................................................ 66
4.6.5 間接張力強度與漢堡輪跡試驗 ............................................ 67
第五章 結論與建議 ......................................................................................... 68
5.1 結論 .................................................................................................... 68
5.2 建議 .................................................................................................... 69
參考文獻 ........................................................................................................... 70
參考文獻 中華民國國家標準 CNS 15478 (2011),自瀝青鋪面混合料中定量萃取瀝青
試驗法。
中華民國國家標準 CNS 486 (2011),粗細粒料篩分析法。
中華民國國家標準 CNS 487 (2013),細粒料密度、相對密度(比重)及吸水率
試驗法
中華民國國家標準 CNS 488(2008),粗粒料密度、相對密度(比重)及吸水
率試驗法
中華民國國家標準 CNS 10090(2009),瀝青/柏油針入度試驗法
中華民國國家標準 CNS 10091(2009),瀝青延性試驗法
中華民國國家標準 CNS 14186(1998),無填充料瀝青黏度測定法。
COLORR,2022/05/2,花王新製品 NEWTLAC Series 高耐久度瀝青改性劑
塑膠趨勢網,2021-08-02 日本花王開發將 rPET 融入瀝青的技術,文章編
號:FHADFQ84ZS 陳裕新(2005),半固態瀝青膠泥之黏度試驗特性,中華技術 e-book 1 月第 65
期。
黃隆昇(2003),瀝青混凝土巨觀車轍及微觀軌跡之行為機制分析,博士論文,
台南,國立成功大學。
朱伯彥 (2003),骨材級配對排水瀝青混凝土成效之影響,國立成功大學碩
士班研究所碩士論文。
王睿懋:〈不同高分子改質瀝青(PMB)之物理及化學初步探討〉。碩士論
文,國立中央大學,2009。
詹謦聯:〈氧化碴應用於密級配瀝青混凝土實驗室成效分析〉。碩士論文,
國立中央大學,2019。
簡啟倫:〈冷拌再生乳化瀝青混凝土應用於鋪面底層之可行性評估〉。碩士
論文,國立中央大學,2019。
71 AASHTO. (2018). “Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA)” AASHTO T324, Washington, DC. B.Tsai, E.Coleri, J.Harvey, et al.(2016), Evaluation of AASHTO T 324 Hamburg-
Wheel Track Device test, Construction and Building Materials,114,248-260. J.Chen, M.Liao. (2002), Evaluation of internal resistance in hot-mix asphalt (HMA) concrete, Construction and Building Materials, 16, 313-319. J.Button, D.Perdomo, and R.Lytton (1990).,Influence of aggregate on rutting in asphalt concrete pavements., Transp. Res. Rec., 1259,141–152. L.Walubita, A.Faruk, J.Zhang, et al.(2016), The Hamburg rutting test - Effects of HMA sample sitting time and test temperature variation, Construction and Building Materials,108,22-28. R.Izzo, M.Tahmoressi, (1999), Use of the Hamburg Wheel-Tracking Device for Evaluating Moisture Susceptibility of Hot-Mix Asphalt, Transportation Research Record: Journal of the Transportation Research Board, 1681, 76-
85. R.Ahlrich(1996),Influence of aggregate gradation and particle shape/texture on permanent deformation of hot mix asphalt pavements.,U.S. Army Engineer Waterways Experiment, Technical Rep. GL-96-1. S.Kim, J.Shen, M.Myung Jeong, (2017), Effects of Aggregate Size on the Rutting and Stripping Resistance of Recycled Asphalt Mixtures, Journal of Materials in Civil Engineering,30,04017280-1-10. S.Ibrahim,Y Yetkin,B.O.Hacer (2014), Encapsulation Technology and Techniques in Self-Healing Concrete, Journal of Materials in Civil Engineering, 25, 864-870. Y.Sun, J.Chen, B.Pan, et al. (2017), Three-Dimensional Micromechanical Complex-Modulus Prediction of Asphalt Concrete Considering the Aggregate Interlocking Effect, Journal of Materials in Civil Engineering,29,04017153-1-9.
指導教授 林志棟 審核日期 2023-5-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明