博碩士論文 110621010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.119.105.239
姓名 林華恩(Hua-En Lin)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 使用X與K波段雷達衰減差反演液態水含量與雷達估計粒徑:模擬實驗與個案研究
相關論文
★ 雙偏極化雷達參數變分法定量降水估計評估:五分山S波段與C波段★ 統計分析2008年西南氣流實驗期間對流系統的雙偏極化雷達拉格朗日特徵
★ 使用Morrison方案和雙偏極化雷達進行中尺度對流系統雲物理特性上的模擬和驗證★ 台灣周邊中尺度對流系統及綜觀環境特徵統計分析
★ 評估北台灣S波段雙偏極化雷達定量降水估計垂直修正之效益★ 利用模糊邏輯法預報臺灣地區午後對流肇始事件
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討基於ZPHI與冪定律擬合(FIT)的兩種雙波長技術(Dual-wavelength technique),在反演雲雨結構中液態水含量(Liquid water content, LWC)和雷達估計粒徑(Radar estimate size, RES)之能力。並建立一系列資料QC流程,測試其對反演結果不確定性之改善效益。這些雙波長技術利用從X波段和K波段雷達所得到的路徑總和衰減(Path-integrated attenuation, PIA)來估計每一格點之衰減率(Specific attenuation, A)。在理想模擬實驗中,本研究使用雨滴譜儀資料與背向散射模擬來獲得模擬觀測之雙波長回波場。實驗結果顯示,資料品質對反演結果影響甚鉅。評估FIT法反演之衰減率誤差,引入基礎ZPHI衰減修正與米氏散射(Mie scattering)修正,能使MAPE從32.3%下降至25.9%。比較不同反演方法之表現,無論LWC或RES場,ZPHI法皆較為貼合真實場的分布特徵,以LWC場為例,其擁有較高的相關係數(0.84)及較低的RMSE(0.11 g m-3),而米氏散射修正流程能減少部分因電磁波背向散射強度減弱而導致的回波強度誤差。
在實際個案探討,本研究使用2021年宜蘭劇烈降雨觀測實驗(YESR 2021)與台灣區域豪雨觀測和預測實驗(TAHOPE)期間之TEAM-R與MRR-PRO雙波長觀測資料進行反演。並分別與雨滴譜儀模擬結果與NCAR S-Pol之雙偏極參數反演結果進行驗證。實驗結果顯示,得益於可在每個格點作調整的常數係數,ZPHI法反演之LWC-Z與RES-Z關係較為離散,在統計上與S-Pol雙偏參數反演結果更加吻合,其機率分布重疊比率分別為42及47%。使用本研究發展之資料同調及米氏散射修正等資料品管流程後,能有效減少反演結果之異常分布,其中又以FIT法結果之改善最為明顯。比較兩個案之降水特性差異,YESR反演之LWC量值較TAHOPE為高,RES則較小,反應冬季淺對流及梅雨期鋒面深對流之降水特性差異。
摘要(英) This study investigates the capabilities of two dual-wavelength techniques, the ZPHI-based method and the power-law fitting (FIT) method, in retrieving liquid water content (LWC) and radar estimate size (RES) in cloud-rain regions. These techniques utilize path-integrated attenuation (PIA) obtained from X- and K-band radar to estimate specific attenuation (A) at each grid point. This study also establishes a series of data quality control (QC) processes to test the effectiveness in improving the uncertainty of retrievals. In the ideal simulation experiments, distrometer data and T-matrix backscattering simulations were used to generate simulated reflectivity fields. The results demonstrate the significant impact of data quality on the retrievals. Evaluating the A errors in the FIT method, the introduction of basic ZPHI attenuation correction and Mie scattering correction reduces the mean absolute percentage error (MAPE) from 32.3% to 25.9%. Comparing the performance of different retrieval methods, ZPHI method exhibit better agreement with the distribution characteristics of the truth for LWC and RES fields. For example, the LWC field shows a higher correlation coefficient of 0.84 and lower RMSE of 0.11 g m-3. The Mie scattering correction process reduces the error in reflectivity caused by the weakening of backscattering intensity.
In the case study, the retrieval was conducted using dual-wavelength observations from TEAM-R and MRR-PRO during the Yilan Extreme Storm Observation Experiment 2021 (YESR 2021) and Taiwan Heavy Rainfall Observation and Prediction Experiment (TAHOPE). The results were validated against simulated distrometer data and dual-pol retrievals from NCAR S-Pol RHI. The results indicate that, benefiting from adjustable constant coefficients at each grid point, the ZPHI method exhibits better statistical agreement with the S-Pol retrievals. The overlapping probability distribution ratios of the LWC-Z and RES-Z relationships is 42% and 47%, respectively. After applying the data synchronization and Mie scattering correction processes, the anomalous distribution in the retrievals is effectively reduced, with the most significant improvement observed in the FIT method. Comparing the precipitation characteristics between two cases, the LWC retrieved from YESR is higher than those from TAHOPE, while the RES is smaller. It reflects the differences in precipitation characteristics between shallow convective events during winter and deep convective events during the Mei-yu season.
關鍵字(中) ★ 衰減率
★ 液態水含量
★ 雙波長反演方法
★ 米氏散射
關鍵字(英) ★ Specific attenuation
★ Liquid water content
★ Dual-wavelength retrieval methods
★ Mie scattering
論文目次 摘要 i
ABSTRACT ii
致謝 iv
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 文獻探討 2
1.3 研究方向 4
第二章 資料與儀器 5
2.1 理想模擬實驗 5
2.1.1 撞擊式雨滴譜儀 5
2.1.2 T-matrix電磁波背向散射模擬 6
2.2 觀測個案 6
2.2.1 個案介紹 6
2.2.2 雷達簡介 7
第三章 方法 9
3.1 基於雙波長雷達系統之衰減率反演方法 9
3.1.1 FIT衰減率估計法 9
3.1.2 ZPHI衰減率估計法 11
3.2 建立變數間冪定律關係 12
3.2.1 Z-A關係式 12
3.2.2 A-LWC關係式 13
3.3 品管方法 13
3.3.1 基礎ZPHI衰減修正 14
3.3.2 氣體衰減修正 15
3.3.3 米氏散射修正 15
3.3.4 觀測時間遲滯修正 17
3.3.5 垂直網格偏移修正 17
3.4 S-Pol雙偏參數反演LWC方法 18
第四章 理想模擬實驗 20
4.1 資料品質差異於反演結果之表現 20
4.1.1 實驗設計 20
4.1.2 實驗結果 21
4.2 反演方法差異於反演結果之表現 21
4.2.1 實驗設計 21
4.2.2 實驗結果 22
第五章 觀測個案 24
5.1 實驗設計與資料品管流程 24
5.2 YESR 2021 IOP2觀測個案 25
5.2.1 反演結果 25
5.2.2 與雨滴譜儀反演資料比較 25
5.3 TAHOPE IOP3觀測個案 26
5.3.1 反演結果 26
5.3.2 PIA驗證與分析 26
5.3.3 與S-Pol反演結果比較 27
5.3.4 垂直變化過程分析 29
5.4 個案比較 31
第六章 結論與未來展望 32
6.1 結論 32
6.2 未來展望 34
參考資料 36
附錄 38
RES之推導 38
RES與D0、Dm關係 39
附表 40
附圖 41
第二章 41
第三章 44
第四章 54
第五章 59
附錄 72
參考文獻 盧可昕,2018:「利用雙偏極化雷達及雨滴譜儀觀測資料分析2008年西南氣流實驗期間強降雨事件的雲物理過程」,國立中央大學論文,91頁。
中國文化大學 大氣科學學系 天氣資料庫 CCU/SSL。檢索日期:2023年7月2日。檢自:http://140.137.32.27/exp/
國立中央大學PBLAP Figures Collection Center。檢索日期:2023年5月1日。檢自:https://obs.pblap.tw/figPicker.php
Atlas, D., 1954: The estimation of cloud parameters by radar. Journal of Atmospheric Sciences, 11, 309-317.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. Journal of Applied Meteorology and Climatology, 41, 674-685.
Eccles, P. J., 1979: Comparison of remote measurements by single-and dual-wavelength meteorological radars. IEEE Transactions on Geoscience Electronics, 17, 205-218.
Eccles, P. J., and E. A. Mueller, 1971: X-band attenuation and liquid water content estimation by a dual-wavelength radar. Journal of Applied Meteorology and Climatology, 10, 1252-1259.
Ellis, S. M., and J. Vivekanandan, 2011: Liquid water content estimates using simultaneous S and K a band radar measurements. Radio Science, 46, 1-15.
Ferrone, A., A.-C. Billault-Roux, and A. Berne, 2022: ERUO: a spectral processing routine for the Micro Rain Radar PRO (MRR-PRO). Atmospheric Measurement Techniques, 15, 3569-3592.
Hogan, R. J., N. Gaussiat, and A. J. Illingworth, 2005: Stratocumulus liquid water content from dual-wavelength radar. Journal of Atmospheric and Oceanic Technology, 22, 1207-1218.
Jameson, A., and A. Heymsfield, 1980: Hail growth mechanisms in a Colorado storm. Part I: Dual-wavelength radar observations. Journal of Atmospheric Sciences, 37, 1763-1778.
Joss, J., and A. Waldvogel, 1967: Ein spektrograph für niederschlagstropfen mit automatischer auswertung. Pure and applied Geophysics, 68, 240-246.
Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-Wavelength Radars: New Frontier in Atmospheric Cloud and Precipitation Research. Bulletin of the American Meteorological Society, 88, 1608-1624.
Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. Journal of Atmospheric and Oceanic Technology, 8, 259-270.
Martner, B., and Coauthors, 1993: An evaluation of wind profiler, RASS, and microwave radiometer performance. Bulletin of the American Meteorological Society, 74, 599-614.
Oguchi, T., 1983: Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proceedings of the IEEE, 71, 1029-1078.
Park, S., M. Maki, K. Iwanami, V. Bringi, and V. Chandrasekar, 2005: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. Journal of Atmospheric and Oceanic Technology, 22, 1633-1655.
Ryzhkov, A., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. Journal of Atmospheric and Oceanic Technology, 31, 599-619.
Sector, I., 2013: Recommendation itu-r p. 676–10, attenuation by atmospheric gases. International Telecommunications Union.
Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The Rain Profiling Algorithm Applied to Polarimetric Weather Radar. Journal of Atmospheric and Oceanic Technology, 17, 332-356.
Tuttle, J. D., and R. E. Rinehart, 1983: Attenuation correction in dual-wavelength analyses. Journal of Applied Meteorology and Climatology, 22, 1914-1921.
Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. Journal of climate and applied meteorology, 1764-1775.
Vivekanandan, J., W. Adams, and V. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. Journal of Applied Meteorology and Climatology, 30, 1053-1063.
Vivekanandan, J., G. Zhang, and M. Politovich, 2001: An assessment of droplet size and liquid water content derived from dual-wavelength radar measurements to the application of aircraft icing detection. Journal of atmospheric and oceanic technology, 18, 1787-1798.
Vivekanandan, J., D. Zrnic, S. Ellis, R. Oye, A. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bulletin of the american meteorological society, 80, 381-388.
Williams, J. K., and J. Vivekanandan, 2007: Sources of error in dual-wavelength radar remote sensing of cloud liquid water content. Journal of Atmospheric and Oceanic Technology, 24, 1317-1336.
指導教授 張偉裕(Wei-Yu Chang) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明