博碩士論文 110322027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.188.148.71
姓名 蔡念璇(Nien-Hsuan Tsai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 底灰及飛灰混凝土碳養護之工程性質研究
(Study on Engineering Properties of Carbon Curing of Bottom Ash and Fly Ash Concrete)
相關論文
★ 高強度纖維透水混凝土磨耗與堵塞維護之初步研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-24以後開放)
摘要(中) 現今工業發展產生大量溫室氣體,導致極端氣候頻繁發生、溫室效應越發嚴重,故消耗及降低二氧化碳產生成為本研究動機,本研究透過二氧化碳加速養護,及使用底灰、飛灰取代部分水泥用量,藉此達到混凝土〖CO〗_2封存目的,規劃製作長、寬、高為 40×40×30 公分之立方混凝土試體帶模進行碳養護,以鑽心取樣獲得試驗混凝土試體,並將其分成上中下層進行試驗,試驗包含反彈錘、抗壓強度、彈性模數、中性化、吸水率及超音波波速檢測試驗,並使用 SEM、EDS、XRD 檢視混凝土微觀結構,探討碳養護組及控制組(水養護)兩者工程性質。
  以未碳養護純混凝土作為控制組進行試驗,將各混凝土試驗結果與同層之控制組做比較,結果顯示7天齡期各混凝抗壓強度相比控制組得出相對數值,上層混凝土相對數值皆大於下層混凝土,其中進行碳養護之純混凝土上層抗壓強度比控制組高26.1%,齡期7天底灰、飛灰混凝土整體抗壓強度偏低,然達90天齡期兩者抗壓強度分別大於、近似控制組數值;7天齡期經過碳養護之高強度、低強度純混凝土上層彈性模數,相比控制組分別高出27.0%、21.9%,而90天齡期則與控制組相似,相對百分比分別為 -2.7%、-5.3%;底灰、飛灰混凝土中性化深度最高為 1.744mm、1.586mm;7天齡期各碳養護混凝土吸水率皆有所下降,90天齡期底灰、飛灰混凝土相比控制組吸水率下降 -5.6% ~ -38.1%;各碳養護混凝土超音波波速相比控制組百分比皆介於正負10%內;EDS、XRD皆有分析出碳酸鈣存在。
摘要(英) The rapid industrial development in today′s world has resulted in a significant increase in greenhouse gas emissions, leading to frequent occurrences of extreme weather events and exacerbating the greenhouse effect. Therefore, the reduction and mitigation of carbon dioxide production have become the motivation for this research. In this study, carbon dioxide accelerated curing and the partial replacement of cement with bottom ash and fly ash were employed to achieve carbon sequestration in concrete. Cubic concrete specimens measuring 40×40×30 centimeters were prepared with molds for carbon curing. Core samples were obtained for experimental testing, and the specimens were divided into upper, middle, and lower layers for analysis. The experimental tests included rebound hammer, compressive strength, modulus of elasticity, neutralization, water absorption, and ultrasonic wave velocity measurements. Additionally, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were employed to examine the microstructure of concrete and investigate the engineering properties of the carbon curing group compared to the control group (water curing).
  The experiments were conducted with non-carbonated plain concrete as the control group. The results showed that the compressive strength of each concrete specimen at the age of 7 days, compared to the control group, yielded relative values. The compressive strength of the upper concrete specimens in the carbon curing group was 26.1% higher than that of the control group. At the age of 7 days, the overall compressive strength of the bottom ash and fly ash concrete was relatively lower, but at the age of 90 days, the compressive strength of both groups exceeded or approached that of the control group. At the age of 7 days, the upper layer′s modulus of elasticity in the high-strength and low-strength plain concrete specimens after carbon curing was 27.0% and 21.9% higher than that of the control group, respectively. At the age of 90 days, the modulus of elasticity was similar to that of the control group, with relative percentages of -2.7% and -5.3% respectively. The maximum neutralization depths of the bottom ash and fly ash concrete were 1.744mm and 1.586mm, respectively. The water absorption of each carbon-cured concrete specimen decreased at the age of 7 days, and at the age of 90 days, the water absorption of the bottom ash and fly ash concrete decreased by -5.6% to -38.1% compared to the control group. The differences in ultrasonic wave velocity between the carbon-cured concrete specimens and the control group were below 10%. EDS and XRD analyses revealed the presence of calcium carbonate.
關鍵字(中) ★ 二氧化碳養護
★ 抗壓強度
★ 中性化
★ 彈性模數
★ 吸水率試驗
★ 超音波波速檢測
關鍵字(英) ★ Carbon Dioxide Curing
★ Compressive Strength
★ Neutralization
★ Elastic Modulus
★ Water Absorption Test
★ Ultrasonic Wave Velocity Measurement
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 XI
表目錄 XVIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 混凝土養護方式 3
2.1.1 蒸氣養護 3
2.1.2 大氣養護 3
2.1.3 二氧化碳加速養護 4
2.1.4 二氧化碳加速養護隨後飽和石灰水養護 8
2.2 卜作嵐材料:底灰、飛灰 11
2.2.1 底灰、飛灰特性介紹 11
2.2.2 底灰混凝土 13
2.2.3 飛灰混凝土 15
2.3 鑽心取樣相關文獻 18
2.3.1 鑽心試驗相關法規 18
2.3.2 鑽心混凝土與標準圓柱之抗壓強度關係 19
2.3.3 鑽心混凝土抗壓強度的影響因素 19
2.4 微觀結構 21
2.4.1 掃描式電子顯微鏡、X射線能量散布分析儀(SEM、EDS) 21
2.4.2 X光粉末繞射分析(XRD) 24
2.5 小結 25
第三章 研究規劃與試驗介紹 26
3.1 研究規劃與製作 27
3.2 試體配比及編號 32
3.2.1 試體配比 32
3.2.2 試體編號 32
3.3 試驗材料基本性質 34
3.3.1 卜特蘭第一型水泥 34
3.3.2 細骨材 35
3.3.3 粗骨材 37
3.3.4 底灰 38
3.3.5 飛灰 39
3.4 試體製作及養護方式 40
3.4.1 試體製作 40
3.4.2 試體養護方式 42
3.5 試驗及設備介紹 45
3.5.1 反彈錘試驗 45
3.5.2 抗壓強度試驗 46
3.5.3 彈性模數 46
3.5.4 中性化深度試驗 47
3.5.5 吸水率試驗 48
3.5.6 超音波波速試驗 50
3.5.7 SEM及EDS 51
3.5.8 X光粉末繞射儀(X-ray Diffraction,XRD) 52
第四章 結果與討論 53
4.1 碳養護之環境變化 53
4.1.1 碳養護之壓力變化 53
4.1.2 碳養護之環境溫度變化 57
4.2 二氧化碳加速養護對混凝土表面強度之影響 60
4.2.1 混凝土立方試體表面強度 60
4.2.2 鑽心混凝土圓柱試體之表面強度 62
4.3 碳養護對鑽心混凝土之抗壓強度之影響 67
4.3.1 低強度鑽心混凝土抗壓強度 67
4.3.2 高強度鑽心混凝土抗壓強度 71
4.3.3 高低強度鑽心混凝土抗壓強度比對 76
4.3.4 抗壓強度與反彈錘試驗結果比較 79
4.4 碳養護對鑽心混凝土圓柱試體彈性模數之影響 82
4.4.1 不同齡期間高低強度鑽心混凝土之彈性模數 82
4.5 碳養護對底灰、飛灰混凝土鑽心試體孔隙影響 88
4.5.1 鑽心混凝土吸水率分析 88
4.5.2 鑽心混凝土超音波波速 91
4.6 立方體之中性化深度 93
4.7 試體結晶物之定性及定量分析 95
4.7.1 SEM及EDS 95
4.7.2 XRD 102
第五章 結論與建議 110
5.1 結論 110
5.2 建議 113
參考文獻 114
附錄 121
參考文獻 [1]黃慶慶,「鹼活化電弧爐還原碴製作混凝土可行性研究」,國立中央大學土木工程研究所,碩士論文,指導教授:黃偉慶,2008年。
[2]ACI Committee 517,“Accelerated Curing of Concrete at Atmospheric Pressure”, Detroit, MI, U.S.A., Revised Version, American Concrete Institute,1992.
[3]莫詒隆、鄭勝仁、郭正一,「蒸氣養護最佳化分析」,第 10 卷第 2 期,p.3~8,結構工程,民國 84 年 6 月。
[4]黃兆龍,「混凝土性質與行為」,p.451~471,詹氏書局,2005年。
[5]L. Haselbach,“Potential for Carbon Dioxide Absorption in Concrete”, Journal of Environmental Engineering, ASCE, pp.465-472, 2009.
[6]Mabudo, L., K. and S.,“Physical properties and carbon dioxide capture of synthetic gamma-C2S cement composites in the early days of curing”,magazine of Concrete Research, 2015.
[7]Yixin Shaoo, Hilal EI-Hassan,“CO2 Utilization in Concrete”,Third international Conference on Sustainable Construction Material and Technologies, 2010.
[8]Yixin Shao, M Saeed Mirza, Xiaorong Wu,“CO2 sequestration using calciumsilicate Silicate concrete”,Canadian Journal of Civil Engineering,33,pp.776-784,2006.
[9]Goodvrake, C. J. , Young , J. F.,“ Reaction of Beta-Dicalcium Silicate and Tricalcium Silicate with Carbon Dioxide and Water Vapor ”,Journal of the American Ceramic Society, pp.168-171,1979.
[10]Vahid Rostami, Yixin Shao, Andrew J. Boyd,“Durability of concrete pipes subjected to combined steam and carbonation curing”, Construction and Building Materials, 25,P.3345-3355, 2001.
[11]Gamg Ye,“ Carbon Dioxide Uptake by Concrete through Early-Age Curing ”, Master Dissertation, Department of Civil Engineering and AppliedMechanics,McGill University,Montreal, Canada,2003.
[12]Pengfei Ren,Tung-Chai Lin, Kim Hung Mo,“ CO2 pretreatment of municipal solid waste incineration fly ash and its feasible use as supplementary cementitious material”,Journal of Hazardous Materials, Volume 424,Part B ,2022.
[13]S. Jia,“Carbon Kinetics of Cementitious Materials Used in the Geological Disposal of Radiozctive Waste”,Department of Chemical Engineering,
University College London, UK, 2010.
[14]Hongyu Gao,Hongqiang Liao,Min Wang,Fangqin ,“Reinforcing the physicochemical properties of concrete through synergism of CO2 curing and Ca(OH)2 Building Materials”,Volume 280, 2021.
[15]Xiaoying Pana,Caijun Shi, Nima Farzadnia, Xiang Hu, Jianlan Zheng, “Properties and microstructure of CO2 surface treated cement mortars with”,Cement and Concrete Composites,Volume 99,pp.89-99,2019.
[16]張俊鴻、徐敏晃,「燃煤底灰於混凝土的創新應用」,第481期,p.18~28,營建知訊,2023年02月23日。
[17]台灣電力公司,「煤灰海事工程應用手冊」,2021年。
[18]郭容忍,「焚化灰渣作為水泥生料對卜特蘭水泥影響之研究」,國立交通大學,碩士論文,指導教授:黃志彬、袁如馨,2004年。
[19]Nitin Ankur ,Navdeep Singh,“Performance of cement mortars and concretes containing coal bottom ash:A comprehensive review”, Renewable and Sustainable Energy Reviews,vol149,2021.
[20]楊盛行、林正芳、王繼國,「廢棄物處理與再利用」,國立空中大學,2003年。
[21]許孝慈,「控制性低強度材料添加有害廢棄物焚化底灰之耐久性研究」,國立高雄應用科技大學,碩士論文,指導教授 : 林宗曾,2013年。
[22]A. K. Saha,“Effect of class F fly ash on the durability properties of concrete,Sustainable environment research”, vol. 28, no. 1, pp.25-31,2018.
[23]V. Malhotra,“Making concrete" greener" with fly ash”, Concrete international, vol. 21, no. 5, pp. 61-66,1999.
[24]陶羿彣,「晶相與非晶相微細飛灰對水泥基質材料之特性評估」,國立宜蘭大學,碩士論文,指導教授:林威廷,2021年。
[25]B. Damodhara Reddy,M. Mohan Babu, S. Aruna Jyothy, N. Kiran Kumar, Panga Narasimha Reddy,Bode Venkata Kavyateja,K. Hemanth Kumar, “Strength and durability of concrete by partial replacement of cement by fly ash and fine aggregates by granite dust”, Materials Today: Proceedings,6 April 2023.
[26]中華民國國家標準(CNS),CNS1238「混凝土鑽心試體及鋸切長條試體取樣法」,經濟部標準檢驗局,2015年。
[27]湛淵源,「結構混凝土鑽心強度尺寸效應的問題」,第720期,技師報,2011年。
[28]J. Bunge,“Testing of Concrete in Structure”, Surrey University Press, 1982.
[29]M. G. G. John H. Bungey,“Testing of Concrete in Structures,4th Edition”, CRC Press, 2014.
[30]A. E.Ahmed,“Does Core Size Affect Strength”,Concrete International, Vol. 21 ,NO.8,pp.35-39, 1999.
[31]Price, W.H.,“Factors Influencing Concrete Strength”,Journal of the American Concrete Institute,Vol. 47,No.6,pp.417-425, 1951.
[32]楊三興,「混凝土早期鑽心擾動強度分析」,國立中興大學,碩士論文,指導教授:謝孟勳。
[33]張世杰,「混凝土鑽心試體尺寸與強度關係之探討」,國立屏東科技大學,碩士論文,指導教授:盧俊愷、蔡孟豪。
[34]盧俊愷、林万傑、蔡孟豪,「以混凝土牆現地試驗探討鑽心試體直徑對強度試驗值之影響」,vol.30,No.1,p.47~53,技術學刊,2015。
[35]李宗彥,「都市垃圾焚化飛灰熔渣粉體對不同型態水泥之卜作嵐反應」,國立中央大學,碩士論文,指導教授:王鯤生,2001年。
[36]Nebel H. and Epple M,“Continuous Preparation of Calcite, Aragonite and Vaterite, and of MagnesiumSubstituted Amorphous Calcium Carbonate (Mg-ACC)”, ZAAC, Vol 634(8), pp.1439-1443, 2008.
[37]Yue Wang, Bao Lu, Xiang Hu, Jianhui Liu, Zuhua Zhang, Xiaoying Pan, Zhaobin Xie, Jun Chang , Tingting Zhang, Moncef L. Nehdi , Caijun Shi, “ Effect of CO2 surface treatment on penetrability and microstructure of cement-fy ash–slag ternary concrete, Cement and Concrete Composites”,
2021.
[38]朱東川,「廢棄牡蠣殼粉取代水泥及細骨材對水泥砂漿性質之影響」,國立雲林科技大學,碩士論文,指導教授:蘇南,2023年。
[39]蕭宛瑄,「二氧化碳養護對高強度透水混凝土性質之影響」,國立中央大學土木工程研究所,碩士論文,指導老師:王勇智、李明君,2018年。
[40]ASTMC805/C805M −18,“Standard Test Method forRebound Number of Hardened Concrete”.
[41]BSI,“BS 1881 Testing Concrete :Part 202, Recommendation for Surfacer”,UK,1986.
[42]中華民國國家標準(CNS),CNS10732「硬化混凝土反彈錘試驗法」,經濟部標準檢驗局,1984年。
[43]廖文正、林致淳、詹穎雯,「台灣混凝土彈性模數建議公式研究」,第 31 卷 第 3 期,5-31 頁,結構工程,2016 年。
[44]江權洲,「特殊混凝土對二氧化碳的吸附能力探討」,私立中原大學土木工程研究所,碩士論文,指導教授:李明君、王韡蒨,2015年。
[45]高士軒, 「二氧化碳養護對混凝土性質之研究」,國立中央大學,碩士論文大學土木工程研究所,指導教授:王勇智、李明君,2016 年。
[46]游正宇,「飛灰及底灰混凝土碳養護對抗壓強度及耐久性」,國立中央大學土木工程研究所,碩士論文,指導教授:王勇智、李明君,2022年。
[47]顏聰,「土木材料」,高麗圖書有限公司,2006年。
[48]黃兆龍,「卜作嵐混凝土使用手冊」,科技圖書股份有限公司,2007年。
[49]P. K. Mehta and R. W. Burrows, “Building durable structures in the 21st century”,Concrete international, vol. 23, no. 3, pp. 57-63,2001.
[50]Vagelis G. Papadakis, “Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress”, Cement and Concrete Research,vol.30,pp. 291-299, 2000.
指導教授 王勇智 李明君(Yung-Chih Wang Ming-Gin Lee) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明