博碩士論文 110621021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.220.66.151
姓名 洪家呈(Chia-Cheng Hung)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 無人機觀測臺南地區海陸風三維結構 與伴隨之PM2.5演化
相關論文
★ 鹿林山背景站大氣輻射及氣膠輻射驅動力之研究★ 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究
★ 中壢地區光達消光散射比之長期分析與污染物關聯性研究★ 臺灣大氣背景PM2.5質量濃度之推估
★ 雲林斗六PM2.5濃度變化與氣膠光學特性及氣象條件之關聯性研究★ Mapping Surface Solar Radiation with Satellite Data over Taiwan
★ 開發適用於大氣邊界層觀測的無人機系統★ 利用AERONET資料解析中南半島地區氣膠種類及成分
★ 氣膠對臺灣北部暖雲微物理和毛雨的影響★ Characteristics and Corrections of Thermal Offset for Secondary Standard Pyranometers
★ 氣膠對臺灣中部平原夏季降水日變化之影響★ 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋
★ 2019年春季泰國北部無人機觀測實驗: 邊界層特徵與氣膠垂直分布之研究★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation
★ 整合無人機與光達觀測解析斗六地區空污事件之演變過程★ 氣膠光學及微物理反演法開發:以鹿林山大氣背景站應用為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 臺灣四面環海,地形崎嶇,局地環流(例如:海陸風、山谷風)對於區域天氣扮演著重要角色,在弱綜觀的天氣條件時,海陸風特徵明顯,同時臺灣中南部亦經常觀測到較高的懸浮微粒事件。因此,討論海陸風環流與其伴隨的污染物傳輸將是一重要的研究課題。若能瞭解局地環流對於區域空氣品質的影響,將對於未來天氣守視的重點及氣象預報能夠有所幫助。
本研究使用王聖翔老師實驗室自行開發的無人機大氣觀測系統,藉由提供較高時空解析度及較靈活的觀測調適能力等優勢,於2021年4月23至25日進行連續兩天多點同步無人機密集觀測實驗,共取得87筆定點垂直剖面資料,探討臺南地區在弱綜觀條件下,海陸風環流三維細微結構特徵與其伴隨污染物傳輸的演化,並藉由WRF模式模擬,比較模式是否能夠反映真實的局部環流結構。
研究結果顯示,在弱綜觀天氣型態下,臺南沿海至內陸40 km處都能觀察到海風環流的現象。海風環流於沿海地區在上午9-10時開始發展,海風鋒面於近地面平均風速約3.5-4 ms-1,海風厚度約600公尺,10-11時經過中部平原地區,海風環流厚度約800公尺,此時於海風鋒面之上有海風頭的結構,約在下午13時海風推進到山麓地區,但受到地形效應的影響,海風環流的結構已較不完整,海風厚度約1600公尺,海風鋒面風速僅3 ms-1,海風環流於14-16時風速達到最強,且於沿海和平原地區有較不穩定的KH波特徵。夜間垂直大氣結構可以分成三層,600公尺以下於日落過後轉換為陸風環流,600-1300公尺處為陸風與環境風場轉換層,且底部和頂部都有逆溫層的現象,是屬於夜間殘餘層的結構,有乾空氣沉降的特徵,1300公尺以上為受到環境風場的影響,以綜觀風場所主導。海風與陸風環流皆由沿海先開始發展。本研究期間,PM2.5的來源以本地污染為主,隨日出過後混合層逐漸發展,污染物垂直擴散條件改善,PM2.5濃度有下降的趨勢。近地面在海風鋒面前緣有污染物堆積的現象,當海風鋒面與內陸離岸風發生輻合,會將污染物沿著鋒面帶往高層。海風環流在中午發展完整,高層海風頭與KH波將海風環流帶入的污染物帶往離岸的方向,部分污染物會向下混合,再次經由海風環流帶入內陸地區。日落過後,在300-600公尺間經常有逆溫的構造發生,污染物主要堆積於此逆溫層頂之下,且風速微弱,導致相較於海風環流有較高的PM2.5濃度。在高層1300公尺之上受到綜觀環境風場的影響,會將上游的夜間殘餘層帶入臺南地區,造成高空有一高污染空氣團。
雖然模式對於2公里內的海陸風環流位置與發展的時序掌握的很好,但是於山麓地區的日夜風場和無人機現地觀測差異較大,凸顯未來的海陸風研究應該要著重瞭解綜觀環境風場和地形效應的影響,才能提升預報的準確性。
摘要(英) Taiwan is surrounded by the sea and characterized by rugged terrain, where local circulations, such as land-sea breeze (LSB) and mountain-valley wind, play a significant role in regional weather. Under weak synoptic conditions, the distinct features of LSB become evident. Moreover, central and southern Taiwan frequently experience extreme suspended particulate matter events. Therefore, investigating the interactions between local circulations and the transport of pollutants is of paramount importance. Understanding the influence of local circulations on regional air quality could prove vital for future weather monitoring and meteorological forecasting.
In my research, we employed a self-developed unmanned aerial vehicle (UAV) atmospheric observation system. Taking advantage of its higher spatiotemporal resolution and more flexible observational adaptability, three sites of synchronous day-night UAV observation was carried over Tainan during intensive observing periods from April 23rd to 25th, 2021. 87 UAV vertical profiles have been obtained at experiment to explore the three-dimensional structure characteristics of LSB and the evolution of accompanying pollutant transport in the Tainan region under weak synoptic conditions. Additionally, the WRF model was used to simulate and compare whether the model can reflect the real local circulations.
The results show that under weak synoptic weather, the LSB was observed up to 40 km from the coast in Tainan. The LSB developed in the coastal area around 9-10 AM, with an average near-surface wind of about 3.5-4 m/s and a thickness of approximately 600 m. Between 10-11 AM, it passed through the central plain region, with a thickness of about 800 m and sea breeze advanced to the foothill area, but due to the influence of terrain effect, sea breeze became uncomplete with a thickness of 1600m, and wind speed at sea breeze front reduced to 3 ms-1. The sea breeze reached its peak wind speed between 2-4 PM, with signs of unstable Kelvin-Helmholtz waves observed along the coastal and plain areas. During the night, the vertical atmospheric structure can be divided into three layers. Below 600 m, after sunset, it transitions into a land breeze. At 600-1300 m, it forms a transition layer between the land breeze and the ambient wind, characterized by the presence of inversion layers at both the bottom and top, indicating the structure of the nocturnal residual layer with dry subsidence features. Above 1300 m, it is influenced by the ambient wind field, dominated by synoptic winds.Both sea and land breeze circulations originate from the coastal region. During the study period, PM2.5 was primarily sourced from local pollution. With the development of the mixing layer after sunrise, the vertical diffusion conditions improved, leading to a decreasing trend in PM2.5 concentration. Near the surface, there was a phenomenon of pollutant accumulation at the front edge of the sea breeze. When the sea breeze front converges with the inland offshore wind, pollutants are transported along the front to higher altitudes. The sea breeze, well-developed at noon, carries pollutants brought in from offshore in the direction away from the coast through high-level sea breeze head and Kelvin-Helmholtz wave. Some pollutants mix downward and are brought back inland again through the sea breeze. After sunset, inversions occurred between 300-600 m, where pollutants mainly accumulated below the inversion layer , and weak winds resulted in higher PM2.5 concentrations compared to the sea-land breeze period. Above 1300 m, influenced by the ambient synoptic wind field, the nocturnal residual layer from upstream is transported to Tainan, leading to the presence of a polluted air mass at high altitudes.
While the model performs well in capturing the location and temporal development of LSB within 2 km, there are significant differences between the model and UAV observations in the foothill area′s diurnal wind fields. This highlights the need for future LSB research to focus on understanding the impact of synoptic environmental wind fields and terrain effects to enhance forecast accuracy.
關鍵字(中) ★ 局地環流
★ 海陸風
★ 懸浮微粒
★ 無人機
★ 空氣污染
★ 邊界層
★ 弱綜觀
關鍵字(英) ★ Local circulation
★ Land-sea breeze
★ particulate matter
★ Unmanned aerial vehicle
★ Air pollution
★ Boundary layer
★ Weak synoptic
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xii
一、前言 1
1-1 研究動機 1
1-2 研究目的 2
二、文獻回顧 4
2-1 海陸風 4
2-1-1 海陸風垂直結構 4
2-1-2 海陸風與污染物的相關研究 7
2-1-3 海陸風對於邊界層的影響 10
2-2 無人機於大氣觀測的應用 11
三、研究方法與資料 13
3-1 研究流程 13
3-2 弱綜觀天氣型態定義 14
3-3 臺南地區海陸風範圍定義 16
3-4 觀測資料 17
3-4-1 地面觀測資料 17
3-4-2 高空氣象觀測 19
3-4-3 ERA5再分析資料 20
3-5 WRF模式設定 20
3-6 垂直觀測系統以及觀測策略 23
3-6-1 無人機觀測實驗 23
3-6-2 無人機觀測系統與大氣感測系統 25
3-6-3 無人機觀測資料處理 31
3-6-4 Vaisala探空系統 33
3-7觀測微感測器儀器校正 34
四、結果與討論 37
4-1 綜觀天氣分析與PM2.5濃度分布 37
4-2 臺南地區地面氣象場與空品時序分析 45
4-3 無人機垂直剖面構建海陸風三維結構 50
4-4 PM2.5時空分布的日夜變化 56
4-5 臺南地區夜間穩定邊界層的結構特徵 63
4-6 模式模擬個案局部環流 69
4-7 歷史個案佐證 73
五、總結與未來展望 79
5-1 總結 79
5-2 未來展望 82
參考文獻 83
參考文獻 Anderson, J. C., J. Wang, J. Zeng, G. Leptoukh, M. Petrenko, C. Ichoku and C. Hu (2013). Long-term statistical assessment of Aqua-MODIS aerosol optical depth over coastal regions: bias characteristics and uncertainty sources. Tellus B: Chemical and Physical Meteorology.

Anjos, M. and A. Lopes (2019). Sea breeze front identification on the northeastern coast of Brazil and its implications for meteorological conditions in the Sergipe region. Theoretical and Applied Climatology, 137, 2151-2165.

Atkinson, B. W. (1981). Meso-scale atmospheric circulations.

Barbato, L. R. (1975). Marino, Crashaw, and" Sospetto d′Herode". Philological Quarterly, 54(2), 522.

Båserud, L., Reuder, J., Jonassen, M. O., Kral, S. T., Paskyabi, M. B., & Lothon, M. (2016). Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign. Atmospheric Measurement Techniques, 9(10), 4901-4913.

Berman, S., J.-Y. Ku and S. T. Rao (1999). Spatial and temporal variation in the mixing depth over the northeastern United States during the summer of 1995. Journal of Applied Meteorology and Climatology, 38(12), 1661-1673.

Blumenthal, D., W. White and T. Smith (1978). Anatomy of a Los Angeles smog episode: Pollutant transport in the daytime sea breeze regime. Atmospheric Environment (1967), 12(4), 893-907.

Boucher, O. and T. Anderson (1995). GCM as′ sessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res.

Cassano, J. J. (2014). Observations of atmospheric boundary layer temperature profiles with a small unmanned aerial vehicle. Antarctic Science, 26(2), 205-213.

Caicedo, V., B. Rappenglueck, G. Cuchiara, J. Flynn, R. Ferrare, A. Scarino, T. Berkoff, C. Senff, A. Langford and B. Lefer (2019). Bay breeze and sea breeze circulation impacts on the planetary boundary layer and air quality from an observed and modeled DISCOVER‐AQ Texas case study. Journal of Geophysical Research: Atmospheres, 124(13), 7359-7378.

Chen, F., S. Miao, M. Tewari, J. W. Bao and H. Kusaka (2011). A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. Journal of Geophysical Research: Atmospheres, 116(D12).

Chen, X., F. Zhang and K. Zhao (2016). Diurnal variations of the land–sea breeze and its related precipitation over South China. Journal of the Atmospheric Sciences, 73(12), 4793-4815.

Chen, G., H. Iwai, S. Ishii, K. Saito, H. Seko, W. Sha and T. Iwasaki (2019). Structures of the Sea-Breeze Front in Dual-Doppler Lidar Observation and Coupled Mesoscale-to-LES Modeling. Journal of Geophysical Research: Atmospheres, 124(5), 2397-2413.

Cheng, W.-L. (2002). Ozone distribution in coastal central Taiwan under sea-breeze conditions. Atmospheric Environment, 36(21), 3445-3459.

Clappier, A., A. Martilli, P. Grossi, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani and H. van den Bergh (2000). Effect of sea breeze on air pollution in the Greater Athens Area. Part I: Numerical simulations and field observations. Journal of Applied Meteorology, 39(4), 546-562.

Crosman, E. T. and J. D. Horel (2010). Sea and lake breezes: A review of numerical studies. Boundary-layer meteorology, 137, 1-29.

Davis, S. R., J. T. Farrar, R. A. Weller, H. Jiang and L. J. Pratt (2019). The land‐sea breeze of the red sea: observations, simulations, and relationships to regional moisture transport. Journal of Geophysical Research: Atmospheres, 124(24), 13803-13825.

Finkele, K., J. M. Hacker, H. Kraus and R. A. D. Byron-Scott (1995). A complete sea-breeze circulation cell derived from aircraft observations. Boundary-Layer Meteorology, 73(3), 299-317.

Garrett, S., D. Cook and R. Marshall (2011). The Seabreeze 2009 experiment: investigating the impact of ocean and atmospheric processes on radar performance in the Bay of Plenty, New Zealand. Weather and Climate, 31, 81-99.

Gaza, R. S. (1998). Mesoscale meteorology and high ozone in the northeast United States. Journal of Applied Meteorology and Climatology, 37(9), 961-977.

Gilliam, R. C., S. Raman and D. D. S. Niyogi (2004). Observational and Numerical Study on the Influence of Large-Scale Flow Direction and Coastline Shape on Sea-Breeze Evolution. Boundary-Layer Meteorology, 111(2), 275-300.

Hastie, D., J. Narayan, C. Schiller, H. Niki, P. Shepson, D. Sills, P. Taylor, W. J. Moroz, J. Drummond and N. Reid (1999). Observational evidence for the impact of the lake breeze circulation on ozone concentrations in Southern Ontario. Atmospheric Environment, 33(2), 323-335.

Helmis, C., K. Papadopoulos, J. Kalogiros, A. Soilemes and D. Asimakopoulos (1995). Influence of background flow on evolution of Saronic Gulf sea breeze. Atmospheric Environment, 29(24), 3689-3701.

Holmes, H. A., J. K. Sriramasamudram, E. R. Pardyjak and C. D. Whiteman (2015). Turbulent fluxes and pollutant mixing during wintertime air pollution episodes in complex terrain. Environmental science & technology, 49(22), 13206-13214.

Hsu, Y.-C., M.-H. Lai, W.-C. Wang, H.-L. Chiang and Z.-X. Shieh (2008). Characteristics of water-soluble ionic species in Fine (PM2. 5) and Coarse Particulate Matter (PM10–2.5) in Kaohsiung, Southern Taiwan. Journal of the Air & Waste Management Association, 58(12), 1579-1589.

Hsu, C.-H. and F.-Y. Cheng (2019). Synoptic Weather Patterns and Associated Air Pollution in Taiwan. Aerosol and Air Quality Research, 19(5), 1139-1151.

Houston, A. L., B. Argrow, J. Elston, J. Lahowetz, E. W. Frew and P. C. Kennedy (2012). The Collaborative Colorado–Nebraska Unmanned Aircraft System Experiment. Bulletin of the American Meteorological Society, 93(1), 39-54.

Igel, A. L., S. C. van den Heever and J. S. Johnson (2018). Meteorological and land surface properties impacting sea breeze extent and aerosol distribution in a dry environment. Journal of Geophysical Research: Atmospheres, 123(1), 22-37.

Intrieri, J., C. Little, W. Shaw, R. Banta, P. Durkee and R. Hardesty (1990). The land/sea breeze experiment (LASBEX). Bulletin of the American Meteorological Society, 71(5), 656-664.

Kalthoff, N., B. Adler and I. Bischoff-Gauss (2020). Spatio-temporal structure of the boundary layer under the impact of mountain waves. Meteorologische Zeitschrift, 29(5), 409.

Kim, K.-H., E. Kabir and S. Kabir (2015). A review on the human health impact of airborne particulate matter. Environment international, 74, 136-143.

Kitada, T., K. Igarashi and M. Owada (1986). Numerical analysis of air pollution in a combined field of land/sea breeze and mountain/valley wind. Journal of climate and applied meteorology, 767-784.

Kumer, V.-M., J. Reuder and B. R. Furevik (2014). A comparison of LiDAR and radiosonde wind measurements. Energy Procedia, 53, 214-220.

Lawrence, M. and J. Lelieveld (2010). Atmospheric pollutant outflow from southern Asia: a review. Atmospheric Chemistry and Physics, 10(22), 11017-11096.

Lin, C.H. 2008. Impact of Downward-Mixing Ozone on Surface Ozone Accumulation in Southern Taiwan. Journal of the Air & Waste Management Association, 58: 562–579.

Liu, K.-Y., Z. Wang and L.-F. Hsiao (2002). A modeling of the sea breeze and its impacts on ozone distribution in northern Taiwan. Environmental Modelling & Software, 17(1), 21-27.

Liu, C., J. Huang, Y. Wang, X. Tao, C. Hu, L. Deng, J. Xu, H. W. Xiao, L. Luo, H. Y. Xiao and W. Xiao (2020). Vertical distribution of PM2.5 and interactions with the atmospheric boundary layer during the development stage of a heavy haze pollution event. Science of the total environment, 704, 135329.

Liu, J., X. Song, W. Long, Y. Fu, L. Yun and M. Zhang (2022). Structure analysis of the sea breeze based on doppler lidar and its impact on pollutants. Remote Sensing, 14(2), 324.

Loughner, C. P. (2014). Impact of bay-breeze circulations on surface air quality and boundary layer export. J. Appl. Meteor., 53, 1697-1713.

Lyons, W. A., R. A. Pielke, C. J. Tremback, R. L. Walko, D. A. Moon and C. S. Keen (1995). Modeling impacts of mesoscale vertical motions upon coastal zone air pollution dispersion. Atmospheric Environment, 29(2), 283-301.

Mayor, S. D. (2011). Observations of seven atmospheric density current fronts in Dixon, California. Monthly weather review, 139(5), 1338-1351.

Miao, J.-F., L. Kroon, J. Vilà-Guerau de Arellano and A. Holtslag (2003). Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorology and Atmospheric Physics, 84, 157-170.

Miller, G. A. (2003). The cognitive revolution: a historical perspective. Trends in cognitive sciences, 7(3), 141-144.

Nakane, H. and Y. Sasano (1986). Structure of a sea-breeze front revealed by scanning lidar observation. Journal of the Meteorological Society of Japan. Ser. II, 64(5), 787-792.

Oke, T. R. (2002). Boundary layer climates, Routledge.

Papamanolis, N. (2015). The main characteristics of the urban climate and the air quality in Greek cities. Urban Climate, 12, 49-64.

Parajuli, S. P., G. L. Stenchikov, A. Ukhov, I. Shevchenko, O. Dubovik and A. Lopatin (2020). Aerosol vertical distribution and interactions with land/sea breezes over the eastern coast of the Red Sea from lidar data and high-resolution WRF-Chem simulations. Atmospheric Chemistry and Physics, 20(24), 16089-16116.

Phan, T. T. and K. Manomaiphiboon (2012). Observed and simulated sea breeze characteristics over Rayong coastal area, Thailand. Meteorology and Atmospheric Physics, 116, 95-111.

Ramanathan, V., P. Crutzen, D. Althausen, J. Anderson, M. Andreae, A. Clarke, W. Collins, J. Coakley, A. Heymsfield and B. Holben (2001). The Indian Ocean Experiment: Widespread haze from south and southeast Asia and its climate forcing. J. Geophys. Res, 106(28), 371-328.

Schultz, P. and T. T. Warner (1982). Characteristics of summertime circulations and pollutant ventilation in the Los Angeles basin. Journal of Applied Meteorology and Climatology, 21(5), 672-682.

Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen and P. Tercier (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmospheric environment, 34(7), 1001-1027.

Simpson, J. E. (1994). Sea breeze and local winds, cambridge university press.

Strong, P. and D. Ashman (2008). Kahu unmanned aircraft system description and user manual. Unpublished DTA manual. Defence Technology Agency, Auckland.

Stull, R. B. (1988). An introduction to boundary layer meteorology, Springer Science & Business Media.

Stull, R. Practical Meteorology: An Algebra-Based Survey of Atmospheric Science; Version 1.02b; Universityof British Columbia: Vancouver, BC, Canada, 2017; p. 940, ISBN 978-0-88865-283-6.

Talbot, C., C. Leroy, P. Augustin, V. Willart, H. Delbarre and G. Khomenko (2007). Sodar and Lidar Observations and Modelling of the Pollutants Dynamics in a Strongly Industrialized Coastal Area during a Sea-Breeze Event. AGU Spring Meeting Abstracts.

Tang, Y., X. Yang, J. Yang, Z. Cai, S. Han, J. Shi, M. Jiang and Y. Qiu (2022). Investigation of Coastal Atmospheric Boundary Layer and Particle by Unmanned Aerial Vehicle under Different Land-sea Temperature. Aerosol and Air Quality Research, 22(11), 220206.

Tsai, H.-H., T.-H. Ti, C.-S. Yuan, C.-H. Hung and C. Lin (2008). Effects of sea-land breezes on the spatial and temporal distribution of gaseous air pollutants at the coastal region of southern Taiwan. J. Environ. Eng. Manag, 18, 387-396.

Tsai, Y. I. and C.-L. Chen (2006). Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan. Atmospheric Environment, 40(25), 4751-4763.

van den Kroonenberg, A., T. Martin, M. Buschmann, J. Bange and P. Vörsmann (2008). Measuring the Wind Vector Using the Autonomous Mini Aerial Vehicle M2AV. Journal of Atmospheric and Oceanic Technology, 25(11), 1969-1982.

Wong, S. and C. J. Zappa (2020). Quantifying the effect of sea breeze and winter storms on air-water CO 2 exchange in a mega-city estuary. Ocean Sciences Meeting 2020, AGU.

中央氣象局110年觀測年報. (2021). 中央氣象局.

侯昭平 (1997). 海風環流與陸地對流邊界層交互影響之數值研究. 國立臺灣大學大氣科學系碩士論文.

江宙君 (2007). 海陸風對臺灣沿海地區空氣品質之影響. 國立中央大學碩士班論文.

陳誼 (2021). 整合無人機與光達觀測解析斗六地區空污事件之演變過程. 國立中央大學碩士班論文.

周仲島、修榮光 (2015)。屏東平原海風環流之SPOL雷達觀測特徵,大氣科學,頁47-67.

吳育魁,2010,海陸風及熱島效應對台中都會區空氣污染物之影響分析,東海大學環境科學與工程學系碩士論文.

洪秀雄、林沛練,1982:臺灣地區海陸風之研究----第一部:簡單地形之影響,中國範圍天氣系統研討會論文彙編,中央氣象局,403-413。

梁佳修、葉富豪、陳昱均、劉遵賢、陳錦煌,“以 WRF 及 CALPUFF 之全年 模擬探討南部沿海地區之風場及煙流傳輸特性”,2014年環境資源永續發展研討會,桃園縣(2014)。

康語庭(2022). 利用中山大學氣膠光達研究海風對當地氣膠垂直結構之影響. 國立中山大學碩士班論文.

徐健恩 (2020). 氣膠對臺灣中部平原夏季降水日變化之影響. 國立中央大學碩士班論文.

陳焱煌 (1997). 西北臺灣局部環流與邊界層發展之研究. 中央大學大氣物理研究所碩士論文.

柯立晉、王聖翔、黃翔昱等 (2018),應用無人機觀測大氣邊界層結構,航測及遙測學刊,第23卷,第2期,第103-113頁.

黃超群 (2001),中部地區海陸風環流與高臭氧之相關分析. 東海大學碩士班論文.

梁婉琪 (2022). 臺灣局地大氣剖面特徵及其對空氣品質的影響. 國立中央大學碩士論文.

柳中明、蘇維中 (1997). 區域氣象環境與高臭氧之相關分析. 大氣科學, 25(1), 27-50.

林沛練, 張隆男 and 陳景森 (1990). 海風邊界層之發展與污染物濃度的日變化. 大氣科學, 18(4), 287-308.

楊亦德 (2010). CALMET/CALPUFF 模式解析南部地區氣流場及煙流傳輸特性之研究. 輔英科技大學碩士論文.

梁婉琪 (2022). 臺灣局地大氣剖面特徵及其對空氣品質的影響. 國立中央大學碩士論文.

底宗鴻 (2008). 高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討. 國立中山大學碩士論文.
指導教授 王聖翔(Sheng-Hsiang Wang) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明