博碩士論文 110322019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.15.21.42
姓名 鐘岑瀚(Tsen-Han Zhong)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 變斷面懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之最佳化設計與參數識別
相關論文
★ 主動式相位控制調諧質量阻尼器之研發與實驗驗證★ 相位控制之主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證
★ 懸臂梁形式壓電調諧質量阻尼器之 研發與最佳化設計★ 天鉤主動隔震系統應用於單自由度機構分析與實驗驗證
★ 天鉤主動隔震系統應用於非剛體設備物之分析與實驗驗證★ 以直接輸出回饋與參數更新迭代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器
★ 考慮即時濾波與衝程限制之相位控制主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證★ 懸臂梁形式壓電調諧質量阻尼器多自由度分析與最佳化設計之減振與能量擷取研究
★ 設備物應用衝程考量天鉤主動隔震系統之數值模擬分析及實驗驗證★ 考慮Kanai-Tajimi濾波器以直接輸出回饋進行隔震層阻尼係數之最佳化設計
★ 相位控制主動調諧質量阻尼器於非線性 Bouc-Wen Model 結構之分析★ 具凸面導軌之雙向偏心滾動隔震系統機構開發與試驗驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 本研究對變斷面懸臂梁形式之壓電調諧質量阻尼器(Piezoelectric-Tuned Mass Damper, Piezo-TMD),推導完整力電耦合之運動方程式,並轉化為狀態空間後對其系統進行分析。首先將壓電本構方程式(Piezoelectric Constitutive Equation)以尤拉梁形式之懸臂梁結構,推導壓電懸臂梁力學與電路運動方程式,再利用有限元素概念將不同斷面之壓電懸臂梁分割成多個元素塊,並引入多項式形狀函數及疊加元素塊,推導變斷面壓電懸臂梁矩陣形式之運動方程式,以便分析壓電層與基底層尺寸不同的問題。最後加裝外接質量塊於懸臂梁末端形成完整力學方程式,並外加電阻於電路迴路形成完整電路方程式。壓電TMD之設計目的為:吸收結構振動能量至壓電TMD中,並轉換其振動能量為電能後進行擷取;亦即發電效率為其重點,因此本文以壓電阻尼比作為判斷其發電效率之指標。建立完成數值模型後,即可對壓電TMD進行分析,透過繪製頻率反應函數圖可了解元素數量多寡會影響可觀察的模態數量以及模態頻率的準確性,同時也可了解添加外接質量塊後壓電TMD反應受第一模態所主導。而為了解各項壓電材料層面參數影響壓電阻尼比之情況,接著對壓電材料參數進行敏感度分析。由分析發現,壓電材料的軟硬、力電耦合係數以及寄生電容的大小,皆會對最大壓電阻尼比產生不同的影響,從而瞭解挑選壓電材料時之依據。
透過先前團隊研究可知,單純增加壓電材料使用量無法提升最大壓電阻尼比,同時發現尋獲壓電TMD最大壓電阻尼比時,壓電TMD與結構之質量比數值無法再提升從而擁有更好的效果。本研究欲將多個壓電TMD組合成多元壓電調諧質量阻尼器(Piezoelectric - Mutiple Tuned Mass Dampers, Piezo-MTMDs),藉由多元(Mutiple)形式加裝壓電TMD裝至氣彈模型上進行壓電MTMD最佳化設計,藉此打破質量比之上限。因此首先推導出氣彈模型加裝壓電MTMD之運動方程式,並運用最佳化設計方式尋找作為未知參數的外接質量與外接電阻,得以設計出壓電MTMD。設計時,先設計出作為基礎之壓電懸臂梁,其尺寸與參數套用至每組壓電TMD中。再結合氣彈模型,並使用直接搜尋法(Direct Search)進行最佳化設計,找出結構速度H2-norm值最小時各個單獨壓電TMD所匹配之懸臂梁外接質量以及外接電阻之組合,如此便完成壓電MTMD之設計。利用設計出來之壓電MTMD進行數值分析、繪製頻率反應函數圖,並以設計風力進行動力分析,可知壓電MTMD可在減振的同時具備良好的發電效率。最後製作出成品並對其進行系統識別及擬合分析,於系統識別中先使用靜態識別方法:透過靜力及直流電壓加載測試識別出壓電TMD之實際參數;再來分析動態擬合成果:透過自由振動試驗測量壓電TMD位移歷時與產生之電壓歷時。實驗結果與數值分析成果比較,發現藉由增添幾何勁度矩陣以及轉動慣量進入數值分析模型中,可使分析成果成功與壓電TMD動態實驗數據匹配,確認材料參數之正確性,同時完整數值分析模擬方法。
摘要(英) This study focuses on the Piezoelectric-Tuned Mass Damper (Piezo-TMD) with variable cross-section cantilever beams. The complete electromechanical coupled equations are derived and transformed into state-space representation for system analysis. Firstly, the mechanical and electrical motion equations of the piezoelectric cantilever beam are derived by the piezoelectric constitutive equation with the Euler-Bernoulli beam structure. Then, the finite element concept is used to divide the piezoelectric cantilever beam with different cross-sections into multiple element blocks. The polynomial shape functions and superimposed element blocks are introduced to derive the matrix form of the motion equations for the variable cross-section piezoelectric cantilever beam, so that the problem of the size different between piezoelectric layer and the basic layer can be analysized easily. Finally, an external mass is attached to the end of the cantilever beam to form the complete mechanical equation, and an external resistance is added to the circuit loop to form the complete electrical circuit equation. The design purpose of the Piezo-TMD is to absorb structural vibration energy into the Piezo-TMD and convert its vibration energy into electrical energy for harvesting. Thus, the power generation efficiency of the Piezo-TMD is a key concern, and this study uses the piezoelectric damping ratio as an efficiency indicator. After establishing the numerical model, the Piezo-TMD can be analyzed. By drawing the frequency response function diagram, the number of the observable modes and the accuracy of the modal frequency affected by the number of elements can be understood. It is also possible to understand that the response of the Piezo-TMD is controlled by the first mode after adding an external mass block. In order to understand the influence of various piezoelectric material parameters on the piezoelectric damping ratio, sensitivity analysis of piezoelectric material parameters is conducted. The analysis shows that the softness and hardness of the piezoelectric material, the electromechanical coupled coefficient, and the size of the parasitic capacitance all have different effects on the maximum piezoelectric damping ratio, which provides a basis for selecting piezoelectric materials.
Based on the previous research by our team, it is known that simply increasing the amount of piezoelectric material cannot improve the maximum piezoelectric damping ratio. It was also found that when the Piezo-TMD exist the maximum piezoelectric damping ratio, the mass ratio between the Piezo-TMD and the structure cannot be further improved to achieve better results. Therefore, this study further aims to combine multiple Piezo-TMDs into Piezoelectric-Multiple Tuned Mass Dampers (Piezo-MTMDs) to break through the limitation of the mass ratio. The motion equations for the aeroelastic model structure with Piezo-MTMDs are derived, and the optimization design method is used to find the unknown parameters of the external mass and external resistance to design the Piezo-MTMDs. During the design process, priority is given to design the fundamental piezoelectric cantilever beam that the dimensions and the parameters are applied to each set of Piezo-TMDs before installed on the aeroelastic model structure. The study uses the Pattern-Search method for optimization design to find the combination of the external mass and external resistance of each individual Piezo-TMD; the structure velocity H2-norm value is the smallest, thus completing the design of the Piezo-MTMDs. The designed Piezo-MTMDs are used for numerical analysis, drawing frequency response function diagrams, and conducting dynamic analysis with design wind force, which show that the Piezo-MTMDs can achieve excellent power generation efficiency while effectively reducing vibrations. Finally, a designed Piezo-TMD which is manufactured is applied to system identification and model fitting analysis. During the system identification, the static identification method is proposed firstly: the actual parameters of the Piezo-TMD are identified through static loading tests with static force and DC voltage. Next, the dynamic model fitting results are analyzed: the displacement history and voltage history of the Piezo-TMD are measured through free vibration tests. By comparing the experimental results with the numerical analysis results, it is found that the analysis results can successfully match the dynamic experimental data of the Piezo-TMD by adding geometric stiffness matrices and rotational inertias into the numerical analysis model. The matched results can confirm the correctness of the material parameters, and complete the numerical analysis simulation method.
關鍵字(中) ★ 多元壓電調諧質量阻尼器
★ 壓電材料系統識別
★ H2-norm最佳化設計
★ 有限元素模型
★ RC電路
★ 能量擷取
關鍵字(英) ★ piezoelectric mutipled tuned mass dampers
★ piezoelectric material system identification
★ H2-norm optimization
★ finite element model
★ RC circuit
★ energy harvesting
論文目次 摘要 iv
ABSTRACT vi
目錄 viii
圖目錄 xi
表目錄 xvi
符號說明 xviii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 研究內容 5
第二章 壓電懸臂梁方程式推導 7
2-1 壓電材料組成律 7
2-2 壓電懸臂梁本構方程式推導 11
2-3 完整力電耦合系統之壓電懸臂梁運動方程式推導 16
2-4 壓電懸臂梁之有限元素矩陣及壓電運動方程式 18
2-5 多元素矩陣疊加之變斷面壓電懸臂梁 22
2-6 壓電懸臂梁外接質量塊與外加電路 27
2-7 狀態空間表示法 28
2-8 特徵分析 30
2-9 頻率反應函數 31
第三章 壓電懸臂梁數值模擬 33
3-1 理想值數值模擬 33
3-1-1 分段數量之頻率反應函數比較 34
3-1-2 加入外接質量塊之壓電懸臂梁數值模擬 39
3-2 壓電梁參數敏感度分析 44
第四章 氣彈模型加裝壓電TMD之模擬 53
4-1 氣彈模型 53
4-1-1 氣彈模型運動方程式 54
4-1-2 氣彈模型頻率反應函數 55
4-1-3 氣彈模型空構架動力分析 57
4-2 氣彈模型加裝單一壓電TMD與壓電MTMD 58
4-2-1 氣彈模型加裝單一壓電TMD運動方程式 60
4-2-2 氣彈模型加裝壓電MTMD運動方程式 61
4-2-3 最佳化設計壓電MTMD 66
4-3 數值模擬 71
4-3-1 壓電MTMD參數 71
4-3-2 氣彈模型加裝壓電單一TMD與壓電MTMD頻率反應函數 76
4-3-3 設計風力歷時分析 83
第五章 實驗配置與系統識別 92
5-1 氣彈模型 93
5-1-1 氣彈模型實驗器具與量測儀器 93
5-1-2 氣彈模型量測介面與配置 97
5-1-3 氣彈模型系統識別流程 97
5-1-4 氣彈模型系統識別數據整理 98
5-2 壓電調諧質量阻尼器 105
5-2-1 靜態識別 105
5-2-1-1 靜態識別實驗器具與儀器 106
5-2-1-2 靜態識別實量測介面與配置 113
5-2-1-3 靜態識別流程 118
5-2-1-4 靜態識別數據整理 128
5-2-2 動態擬合 137
5-2-2-1 動態擬合實驗器具與儀器 137
5-2-2-2 動態擬合量測介面與配置 140
5-2-2-3 動態測量流程 148
5-2-2-4 動態測量數據整理 148
5-2-2-5 動態擬合分析 158
5-3 壓電阻尼比變化之探討 164
第六章 結論與建議 175
6-1 結論 175
6-2 建議 178
參考文獻 179
附錄A 直接搜尋法 186
A-1  直接搜尋法之概念 186
A-2  直接搜尋法之應用 188
附錄B 幾何勁度矩陣 189
參考文獻 [1] 「建築物耐風設計規範與解說」,內政部營建署,台內營字第 1030813291 號。
[2] 周維苓,「壓電調諧質量阻尼器之研究」,碩士論文,國立台灣大學土木工程學系 (2018)。
[3] 何彥葳,「改良之壓電調諧質量阻尼器及其應用於台北 101 之最佳化概念設計」,碩士論文,國立台灣大學土木工程學系 (2019)。
[4] 賴勇安、周維苓、鍾立來,「壓電調諧質量阻尼器於垂直振動減振與能量擷取」,結構工程,第三十五卷,第三期,第 63-84 頁 (2020)。
[5] 趙嘉仁,「懸臂梁形式壓電調諧質量阻尼器之研發與最佳化設計」,碩士論文,國立中央大學土木工程學系 (2021)。
[6] 曹運,「懸臂梁形式壓電調諧質量阻尼器多自由度分析與最佳化設計之減振與能量擷取研究」,碩士論文,國立中央大學土木工程學系 (2022)。
[7] 張淇閎,「以直接輸出回饋與參數更新迭代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器」,碩士論文,國立中央大學土木工程學系 (2022)。
[8] Manbachi A, Cobbold RSC. “Development and application of piezoelectric materials for ultrasound generation and detection”, Ultrasound,19 (4): 187-196 (2011).
[9] Gautschi, G. “Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors”, Materials and Amplifiers. Springer (2002).
[10] IEEE Std 176-1987. “Standard on Piezoelectricity”, ANSI/IEEE, New York, 1988.
[11] Song G, Sethi V, and Li H.N. “Vibration control of civil structures using piezoceramic smart materials: a review”, Engineering Structures, 28:1513-1524 (2006).
[12] Park G, Cudney H.H., and Inman D.J. “Impedance-based health monitoring of civil structural components”, ASCE Journal of Infrastructure Systems, 6(4): 153-160 (2000).
[13] Zhao X, Gao H, Zhang G, Ayhan B, Yan F, Kwan C and Rose J.L. “Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. defect detection, localization and growth monitoring”, Smart Materials and Structures, 16(4):1218-1225 (2007).
[14] Moura JDRV, and Steffen V. “Impedance-based health monitoring for aeronautic structures using statistical meta-modeling”, Journal of Intelligent Material Systems and Structures, 17(11):1023-1036 (2006).
[15] Annamdas VGM, Yang Y, and Soh C.K. “Influence of loading on the electromechanical admittance of piezoceramic transducers”, Smart Materials and Structures, 16(5): 1888-1897 (2007).
[16] Mall S. Integrity of Graphite/Epoxy Laminate “Embedded with Piezoelectric Sensor/ Actuator under Monotonic and Fatigue Loads”, Smart Materials and Structures, 11(4):527-533 (2002).
[17] Abé M, Park G, and Inman, D.J. “Impedance-based monitoring of stress in thin structural members”, Proceedings of 11th International Conference on Adaptive Structures and Technologies, 285-292 (2000).
[18] Ong C.W., Yang Y.W., Naidu ASK, Lu Y., and Soh CK. “Application of the electro-mechanical impedance method for the identification of in-situ stress in structures”, Smart Structures, Devices, and Systems, Proceedings of SPIE, 4935:503-514 (2002).
[19] Sun F.P., Chaudry Z., Rogers C.A., Majmundar M., and Liang C. “Automated real-time structure health monitoring via signature pattern recognition. Proceedings of the Smart Structures Materials Conference”, Proceedings of SPIE, 2443:236-247 (1995).
[20] Song G., Gu H., and Mo Y.L. “Concrete structural health monitoring using embedded piezoceramic transducers”, Smart Materials and Structures, 16(4):959-968 (2007).
[21] Song G., Gu H., and Mo Y.L. “Smart aggregates: multi-functional sensors for concrete structures - a tutorial and a review”, Smart Materials and Structures, 17(3):1-17 (2008).
[22] Yan S., Sun W., and Song G. “Health monitoring of reinforced concrete shear walls using smart aggregates”, Smart Materials and Structures, 18(4) 047001 (2009).
[23] Liao W.I., Lin C.H., Huang J.S. and Song G. “Seismic health monitoring of RC frame structures using smart aggregates”, Earthquake Engineering and Engineering Vibration, 12(1):25-32 (2013)
[24] Kamada T., Fujita T., Hatayama T., Arikabe T., Murai N., Aizawa S. and Tohyama K. “Active vibration control of flexural-shear type frame structures with smart structures using piezoelectric actuators”, Smart Materials and Structures, 7:479-488 (1998).
[25] Sethi V. and Song G. “Multimode vibration control of a smart model frame structure”, Smart Materials and Structures, 15:473-479 (2006).
[26] Shimazaki M. and Fujita T. “Experimental study of piezoelectric actuators and magnetostrictive actuators for large-scale smart structures”, The 14th World Conference on Earthquake Engineering (2008).
[27] Garrett G.T. and Chen G. “Experimental characterization of piezoelectric friction dampers”, Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways, Proceedings of SPIE, 4330:405-415 (2001).
[28] Lu L.Y., Lin G.L. and Lin C.Y. “Experimental verification of a piezoelectric smart isolation system”, Structural Control and Health Monitoring, 18(8):869-889 (2011).
[29] Shu Y.C. and Lien I.C. “Analysis of power output for piezoelectric energy harvesting systems”, Smart Materials and Structures, 15:1499-1512 (2006).
[30] Shu Y.C. and Lien I.C. “Efficiency of energy conversion for a piezoelectric power harvesting system”, Journal of Micromechanics and Microengineering, 16(11):2429-2438 (2006).
[31] Shu Y.C. and Lien I.C. “An improved analysis of the SSHI interface in piezoelectric energy harvesting”, Smart Materials and Structures, 16(6): 2253–2264 (2007).
[32] Lien I.C., Shu Y.C., Wu W.J., Shiu S.M. and Lin H.C. “Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting”, Smart Materials and Structures, 19(12): 125009 (2010).
[33] Lien I.C. and Shu Y.C. “Array of piezoelectric energy harvesting by the equivalent impedance approach”, Smart Materials and Structures, 21(8): 082001 (2012).
[34] Lin H.C., Wu P.H., Lien I.C. and Shu Y.C. “Analysis of an array of piezoelectric energy harvesters connected in series”, Smart Materials and Structures, 22(11): 094026 (2013).
[35] Shu Y.C. and Wu P.H. “Finite element modeling of electrically rectified piezoelectric energy harvesters”, Smart Materials and Structures, 24(14): 094008 (2015).
[36] Wu P.H., Chen Y.J., Li B.Y. and Shu Y.C. “Wideband energy harvesting based on mixed connection of piezoelectric oscillators”, Smart Materials and Structures, 26(15): 094005 (2017).
[37] Lumentut MF and Shu Y.C. “A unified electromechanical finite element dynamic analysis of multiple segmented smart plate energy harvesters: circuit connection patterns”, Acta Mechanica, 229: 4575-4604 (2018).
[38] Lumentuta MF and Shu Y.C. “Shunted optimal vibration energy harvesting control of discontinuous smart beams”, Composite Structures, 242: 112126 (2020).
[39] 陳俊穎:〈壓電轉子搭配整流電路功率損耗之改善研究〉,碩士論文,國立台灣大學工學院應用力學研究所,(2020)。
[40] Ma C.C., Lin H.Y., Lin Y.C. and Huang Y.H. “Experimental and Numerical Investigations on Resonant Characteristics of a Single-Layer Piezoceramic Plate and a Cross-Ply Piezolaminated Composite Plate”, Journal of the Acoustical Society of America, vol. 199, no. 3, pp.1476-1486, 2006. (SCI/EI)
[41] Ma C.C., Lin Y.C., Huang Y.H. and Lin H.Y. “Experimental Measurement and Numerical Analysis on Resonant Characteristics of Cantilever Plates for Piezoceramic Bimorphs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 2, pp.227-239, 2007. (SCI/EI)
[42] Huang Y.H. and Ma C.C. “Experimental and Numerical Investigations of Vibration Characteristics for Parallel-type and Series-type Triple layered Piezoceramic Bimorphs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 18, pp.2598-2611, 2009. (SCI/EI)
[43] Huang Y.H. and Ma C.C. “Forced Vibration Analysis of Piezoelectric Quartz Plates in Resonance”, Sensors and Actuators (A), vol. 149, no. 2, pp. 320-330, 2009. (SCI/EI)
[44] Anastasiia Krushynska, Viatcheslav Melechko, Ma C.C. and Huang Y.H. “Mode Excitation Efficiency for Contour Vibrations of Piezoelectric Resonators”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 10, pp.2222-2238, 2011. (SCI/EI)
[45] Ma C.C., Huang Y.H. and Pan S.Y. “Investigation of the Transient Behavior of a Cantilever Beam Using PVDF Sensors,” Sensors, vol. 12, no. 2, pp. 2088-2117, 2012. (SCI/EI)
[46] Huang Y.H. and Ma C.C. “Experimental Measurements and Finite Element Analysis of the Coupled Vibrational Characteristics of Piezoelectric Shells”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 4, pp. 785-798, 2012. (SCI/EI)
[47] Huang Y.H., Ma C.C. and Chao C.K. “High-frequency Resonant Characteristics of Triple-layered Piezoceramic Bimorphs Determined Using Experimental Measurements and Theoretical Analysis,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 6, pp.1219-1232, 2012. (SCI/EI)
[48] Huang Y.H. “Electromechanical Coupling Efficiency of Transverse Vibration in Piezoelectric Plates According to Electrode Configuration”, Journal of the Chinese Institute of Engineers, vol. 36, no. 7, pp. 842-855, 2013. (SCI/EI)
[49] Huang Y.H. Ma C.C. and Li Z.Z. “Investigations on Vibration Characteristics of Two-Layered Piezoceramic Disks”, International Journal of Solids and Structures, vol. 51, no. 1, pp. 227-251, 2014. (SCI/EI)
[50] Huang Y.H., and Hsu H.T. “Solid–liquid coupled vibration characteristics of piezoelectric hydroacoustic devices”, Sensors and Actuators, vol. 238(A), pp. 177–195, Feb. 2016. (SCI/EI)
[51] Khoo S.Y., Zainab Shakir Radeef, Ong Z.C., Huang Y.H., Tong C.W. and Zubaidah Ismai, “Structural Dynamics Effect on Voltage Generation from Dual Coupled Cantilever Based Piezoelectric Vibration Energy Harvester System”, Measurement, vol. 107, pp. 41-52, 2017. (SCI/EI)
[52] Wu Y.C., Huang Y.H., and Ma C.C., “Theoretical analysis and experimental measurement of flexural vibration and dynamic characteristics for piezoelectric rectangular plate”, Sensors & Actuators: A. Physical, vol. 264, pp. 1-25, 2017. (SCI/EI)
[53] Chin W.K., Ong Z.C., Kong K.K., Khoo S.Y., Huang Y.H.and Chong W.T. “Enhancement of Energy Harvesting Performance by a Coupled Bluff Splitter Body and PVEH Plate through Vortex Induced Vibration near Resonance”, Applied Sciences, vol. 7, 921, 2017. (SCI/EI)
[54] Lin C.Y., Huang Y.H. and Chen W.T. “Multimodal Suppression of Vibration in Smart Flexible Beam Using Piezoelectric Electrode-based Switching Control”, Mechatronics, Vol. 53, pp. 152-167, 2018. (SCI/EI)
[55] Ong Z.C., Huang Y.H. and Chou S.L. “Resonant Frequency Reduction of Piezoelectric Voltage Energy Harvester by Elastic Boundary Condition”, Journal of Mechanics, pp. 1-15, 18 July 2019, In press, online published. (SCI/EI)
[56] Ong Z.C., Ooi Y.X., Khoo S.Y. and Huang Y.H. “Two-Stage Multi-Modal System for Low Frequency and Wide Bandwidth Vibration Energy Harvesting”, Measurement, Vpl. 149, 106981, 2020. (SCI/EI)
[57] Den Hartog JP. “Mechanical Vibrations”, 4th edn, McGraw-Hill, New York (1956).
[58] Ioi T and Ikeda K. “On the dynamic vibration damped absorber of the vibration system”, Bulletin of the Japanese Society of Mechanical Engineering, 21:64-71 (1978).
[59] Warburton GB and Ayorinde EO. “Optimum absorber parameters for simple systems”, Earthquake Engineering and Structural Dynamics, 8:197-217 (1980).
[60] Ayorinde EO and Warburton GB. “Minimizing structural vibrations with absorbers”, Earthquake Engineering and Structural Dynamics, 8:219-236 (1980).
[61] Warburton GB. “Optimum absorber parameters for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, 10:381-401 (1982).
[62] Bakre SV and Jangid RS. “Optimum parameters of tuned mass damper for damped main system”, Structural Control and Health Monitoring, 14:448-470 (2007).
[63] Lin C.C., Hu C.M., Wang J.F. and Hu R.Y. “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, 17:367-376 (1994).
[64] Wang J.F., Lin C.C. and Chen B.L. “Vibration Suppression for High Speed Railway Bridges Using Tuned Mass Dampers”, International Journal of Solids and Structures, 40:465-491 (2003).
[65] Lee C.L., Chen Y.T., Chung L.L. and Wang Y.P. “Optimal design theories and applications of tuned mass dampers. Engineering Structures”, 28:43-53 (2006).
[66] Rudinger F. “Optimal vibration absorber with nonlinear viscous power law damping and white noise excitation”, Journal of Engineering Mechanics, 132:46-53 (2006).
[67] Rudinger F. “Tuned mass damper with nonlinear viscous damping”, Journal of Sound and Vibration, 300:932-948 (2007).
[68] Tigli OF. “Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads”, Journal of Sound and Vibration, 331:3035-3049 (2012).
[69] Ghosh A and Basu B. “A closed-form optimal tuning criterion for TMD in damped structures”, Structural Control and Health Monitoring, 14:681-692 (2005).
[70] Chang C.C. “Mass dampers and their optimal designs for building vibration control”, Engineering Structures, 22:454-463 (1999).
[71] Fujino Y and Abe M. “Design formulas for tuned mass dampers based on a perturbation technique”, Engineering and Structural Dynamics, 22:833-854 (1993).
[72] Gerges R.R. “Wind tunnel study of the across-wind response of a slider tower with a nonlinear tuned mass damper”, Journal of Wind Engineering and Industrial Aerodynamics, 91:1069-1092 (2003).
[73] 鍾立來、吳賴雲、賴勇安、連冠華、黃旭輝:〈以結構位移均方最小化作調諧質塊阻尼器之最佳設計〉,結構工程,第二十六卷,第四期,民國 100 年 12 月,31-58 頁。
[74] Iwanami K and Seto K. “An optimum design method for the dual dynamic damper and its effectiveness”, Bulletin of JSME, 27(231):1965-1973 (1984).
[75] Xu K and Igusa T. “Dynamic characteristics of multiple substructures with closely spaced frequencies”, Earthquake Engineering and Structural Dynamics, 21:1059-1070 (1992).
[76] Xu K and Igusa T. “Vibration control using multiple tuned mass dampers”, Journal of Sound and Vibration, 175(4):491-503 (1994).
[77] Joshi AS and Jangid RS. “Optimum parameters of multiple tuned mass dampers for base-excited damped systems”, Journal of Sound and Vibration, 202:657-667 (1997).
[78] Jangid RS. “Optimum multiple tuned mass dampers for base-excited undamped system”, Earthquake Engineering and Structural Dynamics, 28:1041-1049 (1999).
[79] Bakre SV and Jangid RS. “Optimum multiple tuned mass dampers for base-excited damped main system”, International Journal of Structural Stability and Dynamics, 4:527-542 (2004).
[80] Bandivadekar TP and Jangid RS. “Optimization of multiple tuned mass dampers for vibration control of system under external excitation”, Journal of Vibration and Control, 19(12):1854-1874 (2012).
[81] Cai Q.l., Zhu S.Y. and Ke S.T. “Can we unify vibration control and energy harvesting objectives in energy regenerative tuned mass dampers?”,Smart Materials and Structures,29:087002 (2020)。
[82] Li C. and Zhu B. “Estimating double tuned mass dampers for structures under ground acceleration using a novel optimum criterion”, Journal of Sound and Vibration, 298:280-297 (2006).
[83] Hoang N and Warnitchi P. “Design of multiple tuned mass dampers by using a numerical optimizer”, Earthquake Engineering and Structural Dynamics, 34:125-144 (2005).
[84] Wu J and Chen G. “Optimization of multiple tuned mass dampers for seismic response reduction”, Proceedings of the American Control Conference, 1:519-523 (2000).
[85] Hadi NS and Aifiadi Y. “Optimum design of absorber for MDOF structures”, Journal of Structural Engineering, 124:1272-1280 (1998).
[86] Erturk A. and Inman D.J., “A distributed parameter Electromechanical model for cantilevered piezoelectric energy harvesters”, Journal of Vibration and Acoustics, 130(4):041002 (2008).
[87] Chopra A.K., “Dynamics of Structures, Theory and applications to earthquake engineering”, Fourth edition, U.S.A, Pearson Education, (2013).
[88] Hibbeler R.C., “Mechanics of Mmaterial.”, Pearson Education, (2020).
指導教授 賴勇安(Yong-An Lai) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明