博碩士論文 110322601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.227.161.132
姓名 林光澤(Rivalen Halim)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Workability and Mechanical Analysis of Various Warm Mix Asphalt Technology in Taiwan)
相關論文
★ Engineering and Environmental Analysis of Maintenance Interval in Taiwan Freeway -the Case of Guanxi Section★ 3D 鋪面調查車之驗證與國道應用分析
★ 營建剩餘土石方物流監控及管理系統之建置★ 透水性鋪面保水與溫差成效之評估 -以中壢市龍慈路為例
★ 以生命週期評估滾筒碴與轉爐石應用於瀝青混凝土之研究★ 傳統單點雷射與2D雷射應用於平坦度之比較研究
★ 鋪面劣化影像自動辨識應用於鋪面巡查精進研究★ 自動化鋪面破壞影像辨識系統導入鋪面破壞維護管理系統之研究
★ 以ETC大數據結合FWD建立台灣區高速公路鋪面結構評估準則之研究★ The Comparison Study of Various Surface Maintenance Alternatives in Taiwan Freeway
★ The Preliminary Study of conducting Pavement Maintenance Model for Taiwan Provincial Highways using Life-Cycle Cost Analysis★ 冷拌再生瀝青混凝土應用於管線挖掘回填層之可行性研究
★ 台灣現行修補材料運用於柔性鋪面表層裂縫與坑洞修補之耐久性初步探討★ 以車載藍光雷射建構國道鋪面抗滑值與二維紋理之關聯模型
★ 以不同光譜雷射應用於鋪面平坦度量測之綜合性評估★ 冷拌再生瀝青混凝土應用於道路管線挖掘回填工程之現地驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-31以後開放)
摘要(中) 溫拌瀝青作為對環境衝擊較低的技術,目前正陸續在世界各地進行相關研究。面對氣候變遷需要各國政府做出「2050年淨零碳排」承諾和措施,在2022年3月,臺灣公布實現淨零碳排目標的路徑。政府將溫拌瀝青(WMA)作為鼓勵淨零碳排的方法之一。本研究調查了不同的溫拌瀝青技術,如化學添加劑(ZycoTherm),蠟添加劑(Sasobit和聚乙烯),以及發泡技術(Asphamin和注水系統)。旨在評估它們對製造過程、流變性能和瀝青混合料性能的影響。結果顯示,ZycoTherm容易混合,而蠟添加劑需要更高的溫度和較長的混合時間。Asphamin發泡技術相比注水系統更簡單,後者需要額外的機械設備。在降低了30°C的拌合溫度下,所有溫拌瀝青技術在壓實性和工作性方面表現良好。然而,蠟添加劑對瀝青黏結劑的流變性能有顯著影響。Sasobit和聚乙烯皆能夠減少針入度並同時提高瀝青膠泥的軟化點。蠟添加劑的特性則是在增加低溫下的黏度,並在高溫時降低黏度,同時提高老化前及短期老化後,瀝青膠泥於DSR的失效溫度。而其他添加劑對流變性能沒有此類影響。因此,僅靠流變性測試不足以確定拌合和壓實溫度以及瀝青混合料性能的。另一方面,ZycoTherm增加了粒料與黏結劑之間的黏結力,以最佳的沸騰試驗結果(99%)脫穎而出。本研究還發現,以碳酸鈣作為填縫料的混合料在抗水分侵害能力方面不符合要求,且在抵抗車轍形成方面表現不佳。另一方面,添加水泥顯著提高了所有溫拌瀝青技術在抗水分侵害能力和抗車轍能力方面的表現。HMA、ZycoTherm、Sasobit、Polyethlene、Asphamin和注水系統的抗水分侵害能力分別增加了31%、30%、34%、40%、49%和35%。抗車轍能力分別增加了18%、120%、54%、83%、111%和59%。儘管Sasobit和ZycoTherm的性能優於其他添加劑,但本研究中使用的所有WMA技術均符合要求,可在臺灣進行使用。本研究得出之結果可以進行下一步之研究及探討,相信能對溫拌技術運用於台灣之後續研究做出貢獻。
摘要(英) Warm mix asphalt is gaining increasing popularity worldwide, with numerous countries eager to adopt its environmentally friendly and cost effective advantages. Climate change necessitates governments making "2050 Net-Zero Emissions" pledges and measures. In March 2022, Taiwan will unveil its path to net-zero emissions. The government applies WMA as one of its approaches to encourage net zero-emissions initiatives. This research investigated into different Warm Mix Asphalt (WMA) technologies, such as chemical additives (ZycoTherm), wax additives (Sasobit and Polyethylene), and foaming technologies (Asphamin and water injection system). The goal was to evaluate their effects on the manufacturing process, rheological properties, and asphalt mixture performance. The results showed that ZycoTherm blended easily, whereas wax additives required higher temperatures and longer blending times. Asphamin foaming technology proved to be less complicated than the water injection system, which required additional machinery. At a reduced mixing temperature of 30 °C, all WMA technologies performed well in terms of compactability and workability. Wax additives, on the other hand, had a significant impact on the rheological properties of the binder. Sasobit and Polyethylene can decrease penetration depth, while also increase softening point. The behavior of wax additives is to increase viscosity at low temperatures and decrease viscosity at high temperatures. Increase the failure temperature of DSR for the unaged and after short term aging, respectively. Whereas other additives had no such effect on rheological properties. As a result, rheological tests alone were insufficient for determining mixing and compaction temperatures, as well as the performance of asphalt mixtures. On the other hand, ZycoTherm increase bonding between aggregate and binder which stands out with the best boiling test result (99%).The study also discovered that mixtures containing calcium carbonate as a filler failed to meet moisture resistance requirements and performed poorly in terms of rutting. The addition of cement, on the other hand, significantly improved moisture resistance and rutting resistance for all WMA technologies tested. The moisture resistance increase of 31%, 30%, 34%, 40%, 49%, and 35% for HMA, ZycoTherm, Sasobit, Polyethlene, Asphamin, and water injection system, respectively. The rutting resistance increase 18%, 120%, 54%, 83%, 111%, and 59% for HMA, ZycoTherm, Sasobit, Polyethlene, Asphamin, and water injection system, respectively. Based on the results, Sasobit and ZycoTherm outperform other additives, and all of the WMA technologies used in this study still meet the requirements and can be used in Taiwan.
關鍵字(中) ★ 溫拌瀝青技術
★ 化學添加劑
★ 蠟添加劑
★ 發泡技術
關鍵字(英) ★ WMA technology
★ Chemical additive
★ Wax additive
★ Foaming technology
論文目次 摘要 ............................................................................................................................................. i
Abstract ....................................................................................................................................... ii
Table of Contents ...................................................................................................................... iv
List of Figures ........................................................................................................................... vii
List of Table ............................................................................................................................... x
List of Abbreviations ................................................................................................................. xi
List of Symbols ......................................................................................................................... xii
I Introduction ......................................................................................................................... 1
1.1 Research Backgrounds ......................................................................................... 1
1.2 Research Objectives ............................................................................................. 2
1.3 Research Scopes ................................................................................................... 2
1.4 Study Flowchart ................................................................................................... 3
II Literature Review ................................................................................................................ 6
2.1 Warm Mix Asphalt ............................................................................................... 6
2.1.1 Chemical Additives .............................................................................................. 7
2.1.2 Waxes Additives .................................................................................................. 8
2.1.3 Foaming Technologies ....................................................................................... 10
2.2 Effects of WMA Additive in Asphalt Binder Properties ................................... 16
2.2.1 Effects of Chemical Additive ............................................................................. 16
2.2.2 Effects of Wax Additive .................................................................................... 17
2.2.3 Effects of Foaming Additive .............................................................................. 17
2.2.4 Asphalt Chemical Components – SARA ........................................................... 17
2.3 Asphalt Mixture ................................................................................................. 19
2.3.1 Compactability ................................................................................................... 20
2.3.2 Moisture Sensitivity ........................................................................................... 21
v
2.3.3 Rutting Resistance .............................................................................................. 21
2.3.4 Improve WMA mixture performance ................................................................ 22
III Methodology ................................................................................................................. 24
3.1 Warm Mix Asphalt Additive and Asphalt Binder. ............................................ 24
3.1.1 Chemical Additive: ZycoTherm-SP ................................................................... 24
3.1.2 Wax Additive: Sasobit and Polyethylene wax ................................................... 26
3.1.3 Foaming Additive (Asphamin) .......................................................................... 28
3.1.4 Water Injection System ...................................................................................... 29
3.1.5 Asphalt Binder Test ........................................................................................... 34
3.2 Asphalt Mixture ................................................................................................. 42
3.2.1 Aggregate Properties .......................................................................................... 42
3.2.2 Coating ............................................................................................................... 46
3.2.3 Boiling ................................................................................................................ 46
3.2.4 Marshall Stability and Flow ............................................................................... 47
3.2.5 Compactability ................................................................................................... 48
3.2.6 Moisture Sensitivity ........................................................................................... 50
3.2.7 Rutting Resistance .............................................................................................. 51
3.3 MATLAB Analysis ............................................................................................ 52
3.4 Paired Sample t-test ........................................................................................... 53
IV Result and Discussion ................................................................................................... 54
4.1 Warm Mix Asphalt Additive and Asphalt Binder ............................................. 54
4.1.1 Wax Additive: Sasobit and Polyethylene wax ................................................... 54
4.1.2 Foaming Additive : Asphamin ........................................................................... 56
4.1.3 Water Injection System ...................................................................................... 57
4.1.4 Asphalt Binder test ............................................................................................. 59
4.2 Asphalt Mixture ................................................................................................. 68
4.2.1 Mixing and Compaction temperature ................................................................ 69
vi
4.2.2 Aggregate Properties .......................................................................................... 70
4.2.3 Marshall Stability and Flow ............................................................................... 72
4.2.4 Coating ............................................................................................................... 73
4.2.5 Boiling ................................................................................................................ 75
4.2.6 Compactability ................................................................................................... 77
4.2.7 Moisture Sensitivity ........................................................................................... 80
4.2.8 Paired Sample t-test ........................................................................................... 82
4.2.9 Rutting Resistance .............................................................................................. 83
4.3 Discussion .......................................................................................................... 87
4.3.1 Premix ................................................................................................................ 87
4.3.2 Postmix ............................................................................................................... 88
V Conclusion and Recommendation .................................................................................... 91
5.1 Conclusions ........................................................................................................ 91
5.2 Recommendations .............................................................................................. 91
Reference .................................................................................................................................. 92
參考文獻 1. Hassan, M., Evaluation of the environmental and economic impacts of warm-mix asphalt using life-cycle assessment. International Journal of Construction Education and Research, 2010. 6(3): p. 238-250.
2. Cheraghian, G., et al., Warm mix asphalt technology: An up to date review. Journal of Cleaner Production, 2020. 268: p. 122128.
3. NAPA, Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage 2021, Information Series 138. 12th Annual Asphalt Pavement Industry Survey, 2022.
4. TNDC, , Taiwan’s Pathway to Net-Zero Emissions in 2050, N.D. Council, Editor, 2022.
5. Rubio, M.C., et al., Warm mix asphalt: an overview. Journal of Cleaner Production, 2012. 24: p. 76-84.
6. Sukhija, M. and N. Saboo, A comprehensive review of warm mix asphalt mixtures-laboratory to field. Construction and Building Materials, 2021. 274: p. 121781.
7. Şengöz, B., A. Topal, and C. Gorkem, Evaluatio of moisture characteristics of warm mix asphalt involving natural zeolite. Road materials and pavement design, 2013. 14(4): p. 933-945.
8. Sterling, V., NCHRP Report 714 "Special Mixture Design Considerations and Methods for Warm-Mix Asphalt: A Supplement to NCHRP Report 673: A Manual for Design of Hot-Mix Asphalt with Commentary (2011)". 2012.
9. Christensen, D.W., and Bonaquist, R.F. Volumetric requirements for superpave mix design. NCHRP-567, 2006.
10. Fan, Z., et al., Effects of Cement–Mineral Filler on Asphalt Mixture Performance under Different Aging Procedures. Applied Sciences, 2019. 9: p. 3785.
11. Kushwaha, P. and A.S. Chauhan, Pavement design and construction using warm mix asphalt: A bibliometric overview. Materials Today: Proceedings, 2023.
12. Almeida-Costa, A. and A. Benta, Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt. Journal of Cleaner Production, 2016. 112: p. 2308-2317.
13. Pereira, R., et al., Warm mix asphalt: Chemical additives’ effects on bitumen properties and limestone aggregates mixture compactibility. International Journal of Pavement Research and Technology, 2018. 11(3): p. 285-299.
14. Zydex Odor Free Antistrip and Warm Mix Techonolgy, 2022.
15. Mirzababaei, P., Effect of zycotherm on moisture susceptibility of Warm Mix Asphalt mixtures prepared with different aggregate types and gradations. Construction and Building Materials, 2016. 116: p. 403-412.
16. Lamperti, R., et al., Influence of waxes on adhesion properties of bituminous binders. Construction and Building Materials, 2015. 76: p. 404-412.
17. Shang, L., et al., Pyrolyzed wax from recycled cross-linked polyethylene as warm mix asphalt (WMA) additive for SBS modified asphalt. Construction and Building Materials, 2011. 25(2): p. 886-891.
18. Kovinich, J., et al., Wax in Asphalt: A comprehensive literature review. Construction and Building Materials, 2022. 342: p. 128011.
19. European Standard EN 12606-1. Bitumen and bituminous binders–determination of the paraffin wax content–part 1: method by distillation, 2007.
20. Edwards, Y. and P. Redelius, Rheological effects of waxes in bitumen. Energy & Fuels, 2003. 17(3): p. 511-520.
21. Lu, X. and P. Redelius, Compositional and structural characterization of waxes isolated from bitumens. Energy & fuels, 2006. 20(2): p. 653-660.
22. Liu, J. and P. Li, Low temperature performance of sasobit-modified warm-mix asphalt. Journal of materials in civil engineering, 2012. 24(1): p. 57-63.
23. Chaofan, W. and Z. Menglan, Effects of additives for warm mix asphalt on performance grades of asphalt binders. Journal of Testing and Evaluation, 2012. 40.
24. Qin, Q., et al., Morphology, thermal analysis and rheology of Sasobit modified warm mix asphalt binders. Fuel, 2014. 115: p. 416-425.
25. Jameel, M.S., et al., Effect of Aging on Adhesion and Moisture damage of asphalt: a perspective of rolling bottle and bitumen bond strength test. International Journal of Pavement Research and Technology, 2022. 15(1): p. 233-242.
26. Li, Q., H. Zhang, and Z. Chen, Improvement of short-term aging resistance of styrene-butadiene rubber modified asphalt by Sasobit and epoxidized soybean oil. Construction and Building Materials, 2021. 271: p. 121870.
27. Ding, H and S.A. Hesp, Balancing the use of wax-based warm mix additives for improved asphalt compaction with long-term pavement performance. ACS Sustainable Chemistry & Engineering, 2021. 9(21): p. 7298-7305.
28. Li, B., et al., Effect of short-term aging process on the moisture susceptibility of asphalt mixtures and binders containing sasobit warm mix additive. Advances in Materials Science and Engineering, 2015.
29. Kolapkar, S. and S. Sathe, Effect of Sasobit® as a WMA additive on mix design parameters. Materials Today: Proceedings, 2023.
30. Chem, S. The Material Selection Platform of Polyethylene. Omnexus, Accessed date: March 12, 2023. https://omnexus.specialchem.com/selection-guide/polyethylene-plastic.
31. George,D. Wax on, Wax off: Understanding cosmetic wax technology. Prospector, Accessed date: March 12, 2023. https://www.ulprospector.com/knowledge/8646/pcc-understanding-cosmetic-wax-technology/.
32. Edwards, Y., Influence of waxes on bitumen and asphalt concrete mixture performance. Road Materials and Pavement Design, 2009. 10(2): p. 313-335.
33. Edwards, Y., Y. Tasdemir, and U. Isacsson, Effects of commercial waxes on asphalt concrete mixtures performance at low and medium temperatures. Cold Regions Science and Technology, 2006. 45(1): p. 31-41.
34. Tasdemir, Y., High temperature properties of wax modified binders and asphalt mixtures. Construction and Building Materials, 2009. 23(10): p. 3220-3224.
35. Zhang, Y., et al., Influence of different polyethylene wax additives on the performance of modified asphalt binders and mixtures. Construction and Building Materials, 2021. 302: p. 124115.
36. Maharaj, R., V. Ramjattan-Harry, and N. Mohamed, Rutting and fatigue cracking resistance of waste cooking oil modified trinidad asphaltic materials. The Scientific World Journal, 2015.
37. Wu, S., et al., Field Performance of Foaming Warm Mix Asphalt Pavement. Transportation Research Record: Journal of the Transportation Research Board, 2019. 2673: p. 036119811983288.
38. Mohd Hasan, M.R., Z. You, and X. Yang, A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques. Construction and Building Materials, 2017. 152: p. 115-133.
39. Woszuk, A., et al., Effect of zeolite properties on asphalt foaming. Construction and Building Materials, 2017. 139: p. 247-255.
40. Zhang, Y., et al., Synthesis of zeolite A using sewage sludge ash for application in warm mix asphalt. Journal of Cleaner Production, 2018. 172: p. 686-695.
41. Han, X., et al., Preparation and properties of silane coupling agent modified zeolite as warm mix additive. Construction and Building Materials, 2020. 244: p. 118408.
42. Zou, F., et al., Performance of zeolite synthesized from sewage sludge ash as a warm mix asphalt additive. Resources, Conservation and Recycling, 2022. 181: p. 106254.
43. Wang, S. and Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 2010. 156(1): p. 11-24.
44. Król, M., Natural vs. synthetic zeolites. Crystals, 2020. 10(7): p. 622.
45. Bai, R., et al., Creating hierarchical pores in zeolite catalysts. Trends in Chemistry, 2019. 1(6): p. 601-611.
46. Woszuk, A. and W. Franus, Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives. Construction and Building Materials, 2016. 114: p. 556-563.
47. Franus, M., et al., Removal of environmental pollutions using zeolites from fly ash: A review. Fresenius Environmental Bulletin, 2015. 24: p. 854-866.
48. Kheradmand, B., et al., An overview of the emerging warm mix asphalt technology. International Journal of Pavement Engineering, 2014. 15(1): p. 79-94.
49. Kavussi, A. and S.M. Motevalizadeh, Fracture and mechanical properties of water-based foam warm mix asphalt containing reclaimed asphalt pavement. Construction and Building Materials, 2021. 269: p. 121332.
50. Wu, S., et al., Field performance of foaming warm mix asphalt pavement. Transportation Research Record, 2019. 2673(3): p. 281-294.
51. Kavussi, A. and L. Hashemian, Properties of WMA–foam mixes based on major mechanical tests. Journal of Civil Engineering and Management, 2011. 17(2): p. 207-216.
52. Hu, J., et al., Foamed warm mix asphalt mixture containing crumb rubber: Foaming optimization and performance evaluation. Journal of Cleaner Production, 2022. 333: p. 130085.
53. National Academies of Sciences, E. and Medicine, Properties of Foamed Asphalt for Warm Mix Asphalt Applications. NHRRP Report 807. 2015.
54. Reinhard-Wirtgen-Strasse, Wirtgen Cold Recycling Technology, W. GmbH, Editor. 2012.
55. Jenkins, K., M. Van de Ven, and J. De Groot. Characterisation of foamed bitumen. in 7th Conference on asphalt pavements for Southern Africa. 1999.
56. Newcomb, D.E., et al., Properties of foamed asphalt for warm mix asphalt applications. 2015.
57. Saleh, M.F., Effect of rheology on the bitumen foamability and mechanical properties of foam bitumen stabilised mixes. International Journal of Pavement Engineering, 2007. 8(2): p. 99-110.
58. Ozturk, H.I. and M.E. Kutay, Sensitivity of nozzle-based foamed asphalt binder characteristics to foaming parameters. Transportation Research Record, 2014. 2444(1): p. 120-129.
59. Kassem, E., et al., Effect of warm mix additives on the interfacial bonding haracteristics of asphalt binders. International Journal of Pavement Engineering, 2018. 19(12): p. 1111-1124.
60. Hurley, G.C. and B.D. Prowell, Evaluation of Evotherm for use in warm mix asphalt. NCAT report, 2006. 2: p. 15-35.
61. Syed, I.A., U.A. Mannan, and R.A. Tarefder, Comparison of rut performance of asphalt concrete and binder containing warm mix additives. International Journal of Pavement Research and Technology, 2019. 12: p. 162-169.
62. Roja, K.L., A. Padmarekha, and J.M. Krishnan, Rheological investigations on warm mix asphalt inders at high and intermediate temperature ranges. Journal of Materials in Civil Engineering, 2018. 30(4): p. 04018038.
63. Ayazi, M.J., A. Moniri, and P. Barghabany, Moisture susceptibility of warm mixed-reclaimed asphalt pavement containing Sasobit and Zycotherm additives. Petroleum Science and Technology, 2017. 35(9): p. 890-895.
64. Roja, K.L., A. Padmarekha, and JM Krishnan, Influence of warm mix additive and loading rate on rutting of warm mix asphalt pavement. International Journal of Pavement Engineering, 2019. 20(3): p. 366-381.
65. Hamzah, M.O., Evaluation of Rediset for use in warm-mix asphalt: a review of the literatures. International Journal of Pavement Engineering, 2015. 16(9): p. 809-831.
66. Şahan, N., et al., The effect of wax-based additives on penetration and softening points in bitumen modification: A literature review. Procedings of 4th International Conference on Advanced Engineering Technologies - ICADET’22, Bayburt, Turkey. 2022.
67. Harooni Jamaloei, M., M. Aboutalebi Esfahani, and M. Filvan Torkaman, Rheological and mechanical properties of bitumen modified with Sasobit, polyethylene, paraffin, and their mixture. Journal of Materials in Civil Engineering, 2019. 31(7): p. 04019119.
68. Nakhaei, M., K. Naderi, and A.A. Nasrekani, chemical, rheological, and moisture resistance properties of 1 warm mix asphalt modified with polyethylene-wax 2 and ethylene-bis-stearamide additives 3. Transportation Research Board 97th Annual Meeting, Washington DC, 2018.
69. Chee, C.Y., H. Azahari, and M. Rehan, Modification of bitumen characteristic by using recycled polyethylene. Molecular Crystals and Liquid Crystals, 2014. 604(1): p. 33-40.
70. Ghuzlan, K.A. and M.O. Al Assi, Sasobit-modified asphalt binder rheology. Journal of Materials in Civil Engineering, 2017. 29(9): p. 04017142.
71. Roja, K.L., et al., Influence of polymer structure and amount on microstructure and properties of polyethylene-modified asphalt binders. Materials and Structures, 2021. 54: p. 1-17.
72. Zhang, H., et al., Determining the sustainable component of wax-based warm mix additives for improving the cracking resistance of asphalt binders. ACS Sustainable Chemistry & Engineering, 2021. 9(44): p. 15016-15026.
73. Ahmed, T.A. and R.C. Williams, Using a modified asphalt bondstrength test to investigate the properties of asphalt binders with polyethylene wax-based warm mix asphalt additive. International Journal of Pavement Research and Technology, 2018. 11(1): p. 28-37.
74. Al-Adham, K. and H.A.-A. Wahhab, Influence of temperature on Jnr values of polymer modified asphalt binders. International Journal of Pavement Research and Technology, 2018. 11(6): p. 603-610.
75. Wen, Y., et al., The engineering, economic, and environmental performance of terminal blend rubberized asphalt binders with wax-based warm mix additives. Journal of Cleaner Production, 2018. 184: p. 985-1001.
76. Sengoz, B., A. Topal, and C. Gorkem, Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives. Construction and Building Materials, 2013. 43: p. 242-252.
77. Hurley, G.C. and B.D. Prowell, Evaluation of Aspha-Min zeolite for use in warm mix asphalt (NCAT report 05-04). National Centre for Asphalt Technology, Auburn University, 2005.
78. Han, X., et al., Effect of silane coupling agent modified zeolite warm mix additives on properties of asphalt. Construction and Building Materials, 2020. 259: p. 119713.
79. Valdes-Vidal, G., A. Calabi-Floody, and E. Sanchez-Alonso, Performance evaluation of warm mix asphalt involving natural zeolite and reclaimed asphalt pavement (RAP) for sustainable pavement construction. Construction and Building Materials, 2018. 174: p. 576-585.
80. Arabani, M., Z.R. Pirbasti, and G.H. Hamedi, Investigating the impact of zeolite on reducing the effects of changes in runoff acidity and the moisture sensitivity of asphalt mixtures. Construction and Building Materials, 2021. 268: p. 121071.
81. Corbett, L.W., Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Analytical Chemistry, 1969. 41(4): p. 576-579.
82. Speight, J.G., The chemistry and technology of petroleum. 2014: CRC press.
83. Ecker, A., The application of iastrocan-technique for analysis of bitumen. Petroleum and Coal, 2001. 43(1): p. 51-53.
84. Lesueur, D., The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 2009. 145(1-2): p. 42-82.
85. Paliukaitė, M., A. Vaitkus, and A. Zofka, Evaluation of bitumen fractional composition depending on the crude oil type and production technology. Environmental Engineering, 2014.
86. Oliver, J.W., Changes in the chemical composition of Australianbitumens. Road Materials and Pavement Design, 2009.
87. Kevern, J.T., K. Wang, and V.R. Schaefer. Self-consolidating pervious concrete. Proceding Third North American Conference on the Design and Use of Self-Consolidating Concrete (SCC2008), Hawaii. 2008.
88. Yeung, E., A. Braham, and J. Barnat, Exploring the effect of asphalt-concrete fabrication and compaction location on six compaction metrics. Journal of Materials in Civil Engineering, 2016. 28(12): p. 04016163.
89. Airey, G.D., et al., The influence of aggregate, filler and bitumen on asphalt mixture moisture damage. Construction and Building Materials, 2008. 22(9): p. 2015-2024.
90. Hossain, M.I. and R.A. Tarefder, Quantifying moisture damage at mastic–aggregate interface. International Journal of Pavement Engineering, 2014. 15(2): p. 174-189.
91. Xu, S., et al., Moisture characteristics of mixtures with warm mix asphalt technologies – A review. Construction and Building Materials, 2017. 142: p. 148-161.
92. Guo, R. and T. Nian,Analysis of factors that influence anti-rutting performance of asphalt pavement. Construction and Building Materials, 2020. 254: p. 119237.
93. Du, Y., et al., A review on solutions for improving rutting resistance of asphaltpavement and test methods. Construction and Building Materials, 2018. 168: p. 893-905.
94. Gandhi, T., C. Akisetty, and S. Amirkhanian, Laboratory evaluation of warm asphalt binder aging characteristics. International Journal of Pavement Engineering, 2009. 10(5): p. 353-359.
95. Ishaq, M.A., L. Venturini, and F. Giustozzi, Correlation between rheological rutting tests on bitumen and asphalt mix flow number. International Journal of Pavement Research and Technology, 2022. 15(6): p. 1297-1316.
96. Kataware, A.V. and D. Singh, Evaluating effectiveness of WMA additives forSBS modified binder based on viscosity, Superpave PG, rutting and fatigue performance. Construction and building materials, 2017. 146: p. 436-444.
97. Topal, A., et al., Evaluation of rutting performance of warm mix asphalt. International Journal of Civil Engineering, 2017. 15: p. 705-714.
98. 黃三哲、何鴻文、陳仙州、郭鴻騰, 應用漢堡車轍輪跡儀試驗探討鋪面工程品質. 2017: 臺灣公路工程. p. 2-27.
99. Kuity, A., S. Jayaprakasan, and A. Das, Laboratory investigation on volume proportioning scheme of mineral fillers in asphalt mixture. Construction and Building Materials, 2014. 68: p. 637-643.
100. Mohd Shukry, N.A., et al. Effect of various filler types on the properties of porous asphalt mixture. IOP conference series: materials science and engineering. IOP Publishing. 2018.
101. Mehari, Z.B., Effect of different types of filler materials on characteristics of Hot-Mix-Asphalt concrete. Addis Ababa University, 2007.
102. Huang, B., X. Shu, and X. Chen, Effects of mineral fillers on hot-mix asphalt laboratory-measured properties. International Journal of Pavement Engineering, 2007. 8(1): p. 1-9.
103. Wasilewska, M., D. Małaszkiewicz, and N. Ignatiuk. Evaluation of different mineral filler aggregates for asphalt mixtures. IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2017.
104. Chen, M., J. Lin, and S. Wu, Potential of recycled fine aggregates powder as filler in asphalt mixture. Construction and building materials, 2011. 25(10): p. 3909-3914.
105. Modarres, A., H. Ramyar, and P. Ayar, Effect of cement kiln dust on the low-temperature durability and fatigue life of hot mix asphalt. Cold Regions Science and Technology, 2015. 110: p. 59-66.
106. Wang, J., M. Guo, and Y. Tan, Study on application of cement substituting mineral fillers in asphalt mixture. International Journal of Transportation Science and Technology, 2018. 7(3): p. 189-198.
107. Guo, M., et al., A direct characterization of interfacial interaction between asphalt binder and mineral fillers by atomic force microscopy. Materials and Structures, 2017. 50: p. 1-11.
108. Guo, M., et al., A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate. Frontiers of Structural and Civil Engineering, 2018. 12: p. 248-259.
109. Zydex, A.S.M.G.-. ZycoTherm - Anti-Strip & Warm Mix Additive. Accessed date: February 02, 2023. https://zydexgroup.com/.
110. SASOL. Sasobit - The Versatile Additive for Asphalt Mixes, Product Information. Accessed date: January 02, 2023. https://www.sasol.com/.
111. Hainin, M.R., et al., An overall review: Modified asphalt binder containing sasobit in warm-mix asphalt technology. Technology Journal, 2015. 73(4): p. 1-6.
112. Eleyedath, A., S.S. Kar, and A.K. Swamy, Modelling of expansion ratio and half-life of foamed bitumen using gene expression programming. International Journal of Pavement Engineering, 2021. 22(3): p. 369-381.
113. Reinhard-Wirtgen-Strasse, Wirtgen Cold Recycling Technology, W. GmbH, 2010.
114. Asphalt Academy. Technical guideline: Bitumen stabilised materials. A guide for the design and construction of bitumen emulsion and foamed bitumen stabilised materials, 2009.
115. Transportek, C., Foamed asphalt mixes mix design procedure. Contract Report CR-98/077 Dec, 1998.
116. Muthen, K., Foamed asphalt mixes-mix design procedure. Transportation Research Record, 1998. 898: p. 290-296.
117. Jenkins, K. and M. Van de Ven, Guidelines for the mix design and performance prediction of foamed bitumen mixes. SATC, 2001.
118. Jiang, C., et al., TLC–FID (Iatroscan) analysis of heavy oil and tar sand samples. Organic Geochemistry, 2008. 39(8): p. 1210-1214.
119. Yang, P., Q. Cong, and K. Liao, Application of solubility parameter theory in evaluating the aging resistance of paving asphalts. Petroleum science and technology, 2003. 21(11-12): p. 1843-1850.
120 Oyekunle, L., Certain relationships between chemical composition and properties of petroleum asphalts from different origin. Oil & Gas Science and Technology-Revue de l′IFP, 2006. 61(3): p. 433-441.
121. Siddiqui, M.N. and M.F. Ali, Studies on the aging behavior of the Arabian asphalts. Fuel, 1999. 78(9): p. 1005-1015.
122. Sharma, B., et al., Hydrocarbon group type analysis of petroleum heavy fractions using the TLC-FID technique. Fresenius′ Journal of Analytical Chemistry, 1998. 360: p. 539-544.
123. MATLAB, Getting Started with MATLAB Version 5.1. 1997, Massachusetts, US: The MathWorks, Inc.
124. Ross, A., & Willson, V. L. Independent samples T-test. Proceedings Basic and advanced statistical tests, Brill, 2017. p. 13-16.
125. Pasandín, A. and I. Pérez, Effects of the asphalt penetration grade and the mineralogical composition on the asphalt-aggregate bond. Petroleum Science and Technology, 2014. 32(22): p. 2730-2737.
126. Gao, J., et al., High temperature performance of asphalt modified with Sasobit and Deurex. Construction and Building Materials, 2018. 164: p. 783-791.
127. D′angelo, J., R. Dongre, and G. Reinke. Evaluation of repeated creep and recovery test method as an alternative to SHRP+ requirements for polymer modified asphalt binders. Proceedings of the Fifty-First annual Conference of the Canadian Technical Asphalt Association (CTAA): Charlottetown, Prince Edward Island, 2006.
128. Dreessen, S., J. Planche, and V. Gardel, A new performance related test method for rutting prediction: MSCRT. Advanced Testing and Characterization of Bituminous Materials, 2009. 1: p. 971-980.
129. Bonaquist, R.F., Mix design practices for warm mix asphalt. NCHRP Report 691, Washington DC, 2011.
指導教授 陳世晃(Shih-Huang Chen) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明