參考文獻 |
1. Mlonka-Mędrala, A., T. Dziok, A. Magdziarz, and W. Nowak,“ Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal,” Energy, 234, pp. 121229(2021).
2. Wagland, S.T., P. Kilgallon, R. Coveney, A. Garg, R. Smith, P.J. Longhurst, S.J.T. Pollard, and N. Simms,“ Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor,” Waste Management, 31(6), pp. 1176-1183(2011).
3. Wu, H., P. Glarborg, F.J. Frandsen, K. Dam-Johansen, P.A. Jensen, and B. Sander,“ Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor – General combustion and ash behaviour,” Fuel, 90(5), pp. 1980-1991(2011).
4. Faleschini, F., M.A. Zanini, K. Brunelli, and C. Pellegrino,“ Valorization of co-combustion fly ash in concrete production,” Materials & Design, 85, pp. 687-694(2015).
5. 行政院環境保護署, 「固體再生燃料製造技術指引與品質規範」, Editor. (2020).
6. 行政院環境保護署, 「固體再生燃料(SRF)相關管理方式」, Editor. (2021).
7. Saffarzadeh, A., N. Arumugam, and T. Shimaoka,“ Aluminum and aluminum alloys in municipal solid waste incineration (MSWI) bottom ash: A potential source for the production of hydrogen gas,” International Journal of Hydrogen Energy, 41(2), pp. 820-831(2016).
8. Aubert, J.E., B. Husson, and N. Sarramone,“ Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement: Part 1: Processing and characterization of MSWI fly ash,” Journal of Hazardous Materials, 136(3), pp. 624-631(2006).
9. Sieradzka, M., P. Rajca, M. Zajemska, A. Mlonka-Mędrala, and A. Magdziarz,“ Prediction of gaseous products from refuse derived fuel pyrolysis using chemical modelling software - Ansys Chemkin-Pro,” Journal of Cleaner Production, 248, pp. 119277(2020).
10. EN 450-1 Fly ash for concrete – Definitions, requirements and quality control. (2012), European Committee for Standardization.
11. Teixeira, E.R., A. Camões, F.G. Branco, J.B. Aguiar, and R. Fangueiro,“ Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete,” Waste Management, 94, pp. 39-48(2019).
12. Bertolini, L., M. Carsana, D. Cassago, A. Quadrio Curzio, and M. Collepardi,“ MSWI ashes as mineral additions in concrete,” Cement and Concrete Research, 34(10), pp. 1899-1906(2004).
13. Nithiya, A., A. Saffarzadeh, and T. Shimaoka,“ Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash,” Waste Management, 73, pp. 342-350(2018).
14. Aubert, J.E., B. Husson, and A. Vaquier,“ Metallic aluminum in MSWI fly ash: quantification and influence on the properties of cement-based products,” Waste Management, 24(6), pp. 589-596(2004).
15. 吳佩芬、葛家賢,“ 固態廢棄物衍生燃料技術簡介,” 經濟部工業局工安環保技術報導, 132 (2002).
16. 萬皓鵬、李宏台,“ 廢棄物衍生燃料的使用,” 科學發展, 450(2010).
17. ELLGIA. Processing RDF and SRF Fuel. [https://www.ellgia.co.uk/commercial-waste/our-process/processing-rdf-waste/], (2022).
18. 經濟部工業局, 生質能暨環保產業推動計畫, (2018).
19. 羅國肇,“ 流體化床燃燒爐---由糖炒栗子談起,” 科學發展, 450(2010).
20. 蔡孟原,“ 循環式流體化床鍋爐,” 科學發展, 450(2010).
21. 森展企業有限公司. 鏈條式鍋爐. [https://www.soundbell.com.tw], (2022).
22. 台灣電力公司. 燃煤發電機組. [https://www.taipower.com.tw/tc/page.aspx?mid=216&cid=171&cchk=8ce84ad0-fe9e-46ea-ae27-ad659f90a49a], (2022).
23. He, P., X. Zhang, H. Chen, and Y. Zhang,“ Waste-to-resource strategies for the use of circulating fluidized bed fly ash in construction materials: A mini review,” Powder Technology, 393, pp. 773-785(2021).
24. 經濟部工業局, 區域能資源整合循環回收利用示範輔導計畫, (2022).
25. Cho, B.H., B.H. Nam, J. An, and H. Youn,“ Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials-A Review,” Materials (Basel), 13(14)(2020).
26. Lokahita, B., K. Yoshikawa, and F. Takahashi,“ Hydrothermal Treatment of Postconsumer Aseptic Packaging Material: Solid Fuel Production and Aluminum Recovery,” Energy Procedia, 105, pp. 610-615(2017).
27. Muñoz-Batista, M.J., G. Blázquez, J.F. Franco, M. Calero, and M.A. Martín-Lara,“ Recovery, separation and production of fuel, plastic and aluminum from the Tetra PAK waste to hydrothermal and pyrolysis processes,” Waste Management, 137, pp. 179-189(2022).
28. Tian, Y., N.J. Themelis, A.C. Bourtsalas, S. Kawashima, and Y. Gorokhovich,“ Systematic Study of the Formation and Chemical/mineral Composition of Waste-to-energy (WTE) Fly Ash,” Materials Chemistry and Physics, 293, pp. 126849(2023).
29. Tian, Y., N.J. Themelis, D. Zhao, A.C. Thanos Bourtsalas, and S. Kawashima,“ Stabilization of Waste-to-Energy (WTE) Fly Ash for Disposal in Landfills or Use as Cement Substitute,” Waste Management, 150, pp. 227-243(2022).
30. Wang, L., H. Quan, and Q. Li,“ Effect of Solid Waste-Petroleum Coke Residue on the Hydration Reaction and Property of Concrete,” Materials, 12(8), pp. 1216(2019).
31. Wang, Y., Y. Zhao, Y. Han, and M. Zhou,“ The Effect of Circulating Fluidised Bed Bottom Ash Content on the Mechanical Properties and Drying Shrinkage of Cement-Stabilised Soil,” Materials, 15(1), pp. 14(2022).
32. Tian, X., F. Rao, C.A. León-Patiño, and S. Song,“ Effects of aluminum on the expansion and microstructure of alkali-activated MSWI fly ash-based pastes,” Chemosphere, 240, pp. 124986(2020).
33. Joseph, A.M., P. Heede, R. Snellings, A. Van Brecht, S. Matthys, and N. De Belie, Comparison of different beneficiation techniques to improve utilization potential of Municipal Solid Waste Incineration fly ash concrete. (2017).
34. Kremser, K., P. Gerl, A.B. Borrás, D.R. Espinosa, B.M. Martínez, G.M. Guebitz, and A. Pellis,“ Bioleaching/enzyme-based recycling of aluminium and polyethylene from beverage cartons packaging waste,” Resources, Conservation and Recycling, 185, pp. 106444(2022).
35. Coker, E.N. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry. (Year) of Conference.
36. Xuan, D. and C.S. Poon,“ Removal of metallic Al and Al/Zn alloys in MSWI bottom ash by alkaline treatment,” Journal of Hazardous Materials, 344, pp. 73-80(2018).
37. Gökelma, M., A. Vallejo-Olivares, and G. Tranell,“ Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash,” Waste Management, 130, pp. 65-73(2021).
38. Saikia, N., G. Mertens, K. Van Balen, J. Elsen, T. Van Gerven, and C. Vandecasteele,“ Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar,” Construction and Building Materials, 96, pp. 76-85(2015).
39. Gai, W.-Z., W.-H. Liu, Z.-Y. Deng, and J.-G. Zhou,“ Reaction of Al powder with water for hydrogen generation under ambient condition,” International Journal of Hydrogen Energy, 37(17), pp. 13132-13140(2012).
40. Xiao, F., R. Yang, and Z. Liu,“ Active aluminum composites and their hydrogen generation via hydrolysis reaction: A review,” International Journal of Hydrogen Energy, 47(1), pp. 365-386(2022).
41.Mary Joseph, A., R. Snellings, P. Nielsen, S. Matthys, and N. De Belie,“ Pre-treatment and utilisation of municipal solid waste incineration bottom ashes towards a circular economy,” Construction and Building Materials, 260, pp. 120485(2020).
42.Brown, L.J., F.-X. Collard, and J. Görgens,“ Pyrolysis of fibre residues with plastic contamination from a paper recycling mill: Energy recoveries,” Energy Conversion and Management, 133, pp. 110-117(2017).
43.Brown, L.J., F.X. Collard, L.D. Gottumukkala, and J. Görgens,“ Fermentation-pyrolysis of fibre waste from a paper recycling mill for the production of fuel products,” Waste Management, 120, pp. 364-372(2021).
44.Monte, M.C., E. Fuente, A. Blanco, and C. Negro,“ Waste management from pulp and paper production in the European Union,” Waste Management, 29(1), pp. 293-308(2009).
45.Tsai, M.-Y., K.-T. Wu, C.-C. Huang, and H.-T. Lee,“ Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler,” Waste Management, 22(4), pp. 439-442(2002).
46.Wan, H.-P., Y.-H. Chang, W.-C. Chien, H.-T. Lee, and C.C. Huang,“ Emissions during co-firing of RDF-5 with bituminous coal, paper sludge and waste tires in a commercial circulating fluidized bed co-generation boiler,” Fuel, 87(6), pp. 761-767(2008).
47.CNS 3036, 「混凝土用燃煤飛灰及未煆燒或煆燒天然卜作嵐材料」. (2021), 中華民國國家標準(CNS).
48.CNS 1078, 「水硬性水泥化學分析法」. (2020), 中華民國國家標準(CNS).
49.Haile, A., G.G. Gelebo, T. Tesfaye, W. Mengie, M.A. Mebrate, A. Abuhay, and D.Y. Limeneh,“ Pulp and paper mill wastes: utilizations and prospects for high value-added biomaterials,” Bioresources and Bioprocessing, 8(1), pp. 35(2021).
50.Corinaldesi, V., G. Fava, and M. Ruello, Paper mill sludge ash as supplementary cementitious material. (2010).
51.Kim, Y.B., Y.R. Gwak, S.I. Keel, J.H. Yun, and S.H. Lee,“ Direct desulfurization of limestones under oxy-circulating fluidized bed combustion conditions,” Chemical Engineering Journal, 377, pp. 119650(2019).
52.Li, D., X. Ke, M. Kim, R. Cai, H. Yang, M. Zhang, and C.-h. Jeon,“ Attrition and product layer development of limestone during simultaneous calcination and sulfation in a fluidized bed reactor,” Fuel, 293, pp. 120280(2021).
53.Córdoba, P.,“ Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs,” Fuel, 144, pp. 274-286(2015).
54.Harish, P. Kumar, B. Malhotra, P. Phalswal, P.K. Khanna, A. Salim, R. Singhal, and A.K. Mukhopadhyay,“ Effect of reaction rate on the properties of chemically synthesized calcium hydroxide nanoparticles,” Materials Today: Proceedings, 28, pp. 2305-2310(2020).
55.de Castro, R.d.P.V., J.L. de Medeiros, O.d.Q.F. Araújo, M. de Andrade Cruz, G.T. Ribeiro, and V.R. de Oliveira,“ Fluidized bed treatment of residues of semi-dry flue gas desulfurization units of coal-fired power plants for conversion of sulfites to sulfates,” Energy Conversion and Management, 143, pp. 173-187(2017).
56.Navarrete, I., F. Vargas, P. Martinez, A. Paul, and M. Lopez,“ Flue gas desulfurization (FGD) fly ash as a sustainable, safe alternative for cement-based materials,” Journal of Cleaner Production, 283, pp. 124646(2021).
57.Lagosz, A. and J. Malolepszy,“ Tricalcium aluminate hydration in the presence of calcium sulfite hemihydrate,” Cement and Concrete Research, 33(3), pp. 333-339(2003).
58.Kanehira, S., S. Kanamori, K. Nagashima, T. Saeki, H. Visbal, T. Fukui, and K. Hirao,“ Controllable hydrogen release via aluminum powder corrosion in calcium hydroxide solutions,” Journal of Asian Ceramic Societies, 1(3), pp. 296-303(2013).
59.Macanás, J., L. Soler, A.M. Candela, M. Muñoz, and J. Casado,“ Hydrogen generation by aluminum corrosion in aqueous alkaline solutions of inorganic promoters: The AlHidrox process,” Energy, 36(5), pp. 2493-2501(2011).
60.Souza, A.D.V., L.L. Sousa, L. Fernandes, P.H.L. Cardoso, and R. Salomão,“ Al2O3–Al(OH)3-Based castable porous structures,” Journal of the European Ceramic Society, 35(6), pp. 1943-1954(2015).
61.Xu, N., Y. Li, S. Li, H. Wang, R. Xiang, and S. Ouyang,“ Controlled morphologies and hydration process of hydratable alumina by using citric acid,” Journal of the Australian Ceramic Society, 56(4), pp. 1427-1433(2020).
62.Souza, A.D.V., C.C. Arruda, L. Fernandes, M.L.P. Antunes, P.K. Kiyohara, and R. Salomão,“ Characterization of aluminum hydroxide (Al(OH)3) for use as a porogenic agent in castable ceramics,” Journal of the European Ceramic Society, 35(2), pp. 803-812(2015).
|