以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:22 、訪客IP:3.145.58.141
姓名 汪煒傑(Wei-Jie Wang) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 探討地質模型與材料參數之不確定性對於邊坡穩定性分析
(Exploring the Uncertainty of Geological Model and Material Parameters for Slope Stability Analysis)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 臺灣位處於環太平洋地震帶上,地質條件上屬於相對年輕,地質條
件處於破碎、不穩定的狀態。在氣候條件上屬於亞熱帶季風氣候,主要
有東北季風及西南季風所造成的降水,以及夏季容易受颱風所影響,因
此,每當有降雨過後山區邊坡等常有土石滑落鬆動等現象,不僅人員及
財產容易受到威脅;為此上述原因,本研究主要分為兩大主軸,前半部
分主要以無限邊坡計算各種地質與材料的因素來探討邊坡穩定。研究
中考慮的變因有坡度、土層厚度、凝聚力、摩擦角、土壤單位重等因素,
並改良非飽和土壤無限邊坡公式與加入地震力影響公式,進一步分析
地質的不確定性、材料的不確定性、或人為的不確定性因子對於邊坡穩
定性有顯著的影響。此研究中使用蒙地卡羅法計算,可發現邊坡夾角比
起其它因子(土層厚度、地下水位、凝聚力、摩擦角)等有相對較大的標
準差,因此邊坡夾角的變化對於坡地安全係數有著顯著的影響。第二部
分使用數值模擬,本研究所使用的軟體為STEDwin、Geostudio 及Visual
Slope 等軟體進行一般邊坡的分析,且使用Goestudio 進行非飽和土壤
的分析,並參考既有範例進行建模,比較何種參數對安全系數影響甚巨,
及何種軟體對安全係數計算較為保守。並發現在相同參數下,軟體間差
距並不明顯。但仍發現邊邊坡夾角的變化具有較大之標準差。摘要(英) Taiwan is located in the Pacific Rim seismic zone, and the geological conditions are
relatively young and fragmented. In terms of climate, it is a subtropical monsoon climate
and easily affected by typhoons in summer. Thus, slopes of mountainous areas are often
subject to sliding after rainfall. The first half of the study focuses on the stability of the
slope by calculating various geological and material factors. The variables considered in
the study are slope, soil thickness, cohesion, friction angle, soil unit weight, etc. The
formula of infinite slope for unsaturated soil and external earthquake force are improved
and modified. Regarding the uncertainties of geology and material parameters using the
Monte Carlo method, it is found that the slope angle has a relatively larger standard
deviation than other factors (soil thickness, groundwater level, cohesion, friction angle),
so the change of slope angle has a significant effect on the slope safety coefficient. In the
second part, numerical simulation with STEDwin, Geostudio and Visual Slope for general
slope analysis are implemented, and Goestudio is used for unsaturated soil analysis. The
modeling is carried out with reference to existing case to compare which parameters have
a great influence on the factor of safety and which software is more conservative. It was
found that the difference between the software was not significant for the same parameters.
However, it was found that the variation of the side slope angle has a large standard
deviation.關鍵字(中) ★ 蒙地卡羅法
★ 不確定性分析
★ 無限邊坡
★ 非飽和土壤關鍵字(英) ★ Monte Carlo method
★ uncertainty analysis
★ infinite slope
★ unsaturated soil論文目次 目錄
摘要 .............................................................................................................. i
ABSTRACT .................................................................................................. ii
誌謝 ............................................................................................................ iii
目錄 ............................................................................................................ iv
表目錄 .......................................................................................................... vi
圖目錄 ........................................................................................................ viii
符號表 ........................................................................................................ xvi
第 1 章 緒論 ............................................................................................... 1
1.1 研究動機 ............................................................................................. 1
1.2 研究目的 ............................................................................................. 3
1.3 研究流程 ............................................................................................. 4
第 2 章 文獻回顧 ....................................................................................... 6
2.1 山崩案例回顧 ..................................................................................... 6
2.2 邊坡破壞機制 ..................................................................................... 8
2.3 邊坡穩定性分析法........................................................................... 17
2.4 不飽和土壤行為 ............................................................................... 32
2.5 不確定性分析 ................................................................................... 41
2.6 蒙地卡羅模擬法 ............................................................................... 47
第 3 章 研究方法 ..................................................................................... 49
3.1 研究流程 ........................................................................................... 49
3.2 蒙地卡羅設定 ................................................................................... 50
v
3.3 邊坡穩定分析公式選用與設定 ...................................................... 51
3.4 分析參數選用 ................................................................................... 67
3.5 實際案例分析 ................................................................................... 76
第 4 章 結果與討論 ................................................................................. 78
4.1 無限邊坡 ........................................................................................... 78
4.2 一般邊坡 ......................................................................................... 106
4.3 非飽和土壤邊坡 ............................................................................. 113
4.4 實際案例分析 ................................................................................. 120
第 5 章 結論與建議 ............................................................................... 122
5.1 結論 ................................................................................................. 122
5.2 建議 ................................................................................................. 123
參考文獻 ................................................................................................... 125
評審意見回覆表 .......................................................................................... A參考文獻 中央氣象局 (Ed.). (2017). 地震百問. 台北市: 國家圖書館.中央氣象局(2017)。地震百問。臺北市:國家圖書館出版。
田耘昇. (2015). 參數變異性對邊坡穩定分析之影響 以國道 3 號師公格山順向坡崩塌為例.
林宏達, 王建智, & 周勃翰. (2017). 不飽和夯實紅土視凝聚力與剪力強度特性研究. 技術學刊, 32(3), 177-185.
林德貴, 黃伯舜, & 林信輝. (2007). 以等值單列直根模型進行含根邊坡穩定性之量化評估. 中華水土保持學報, 38(1), 15-29.
施國欽. (2014). 大地工程學(二) (6th ed.). 台北市: 文生書局.施國欽. (2014). 大地工程學(二) (6th ed.). 文笙書局.
洪如江. (2007). 初等工程地質學大綱 (5th ed.). 台北市: 工地技術研究發展基金會.洪如江(2007)。初等工程地質學大綱【第五版】。臺北市:工地技術研究發展基金會。
紀宗吉 , 林朝宗, & 劉桓吉. (1998). 林肯大郡地層滑動災變原因之探討. 地質, 十八(一), 43–58.
許中立, & 張延光. (2000). 邊坡穩定分析中之地震力影響. 水土保持學報, 32(3), 167–176.
陳宏宇, & 黃奇瑜. (2000). 臺北斷層在臺北市信義計畫區的分布位置. 土木水利, 26(4), 97–111.
陳宏宇. (2000). 臺灣山崩之工程地質特性. 地工技街, 79, 59–70.陳宏宇(2000)。臺灣山崩之工程地質特性。地工技街, 79,59-70
馮正一,2005,“邊坡穩定處理工程規劃設計準則及施工注意事項”-「國道水土保持設施設置準則及注意事項之擬訂」之第六章,主持人:陳樹群。
楊喬維, 羅健華, 賴世銀, & 許澤善. (2010). 七堵大地滑之滑動機制研究. 中華民國結構工程研討會, 162, 43–58.
鄒鄭翰, & 潘以文. (2006). 部分飽和土壤之精簡力學模式與應用 (Doctoral dissertation).
劉緁玲. (2012). 數種不確定性分析方法於降雨引發坡地淺崩塌模式之比較研究.
鄭文吉. (2013). 漫談蒙地卡羅法的原理及其應用. 高雄區農業改良場研究彙報, 23(1), 26-41.
謝永倫. (2013). 考慮拉出破壞之加勁邊坡破壞分析. 台南市: 國立成功大學土木工程學系碩博士班碩士論文. Retrieved from https://hdl.handle.net/11296/4tjm7u
Bishop, A. W. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(1), 7-17.
Bunce, C. M., Cruden, D. M., & Morgenstern, N. R. (1997). Assessment of the hazard from rock fall on a highway. Canadian Geotechnical Journal, 34(3), 344-356.
Chen, J. C., Jan, C. D., Lee, M. H.,(2007) .“Probabilistic analysis of landslide potential of an inclined uniform soil layer of infinite length: theorem.” Environmental Geology, 51: 1239-1248.
Dai, F. C., Lee, C. F., and Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering geology, 64(1), 65-87.
De Vleeschauwer, C., & De Smedt, F. (2002). Modeling slope stability using GIS on a regional scale. In Geologica Belgica International Meeting (pp. 253-256).
Fookes, P. G. (1997). Geology for engineers: the geological model, prediction and performance. Quarterly Journal of Engineering Geology, 30(4), 293-424.
Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons.
Fredlund, D. G., Rahardjo, H., & Gan, J. K. M. (1987, December). Non-linearity of strength envelope for unsaturated soils. In Proceedings of the 6th international conference on expansive soils, New Delhi, India (Vol. 1, pp. 49-54).
Juang, C. H., Zhang, J., Shen, M., & Hu, J. (2019). Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis. Engineering geology, 249, 148-161.
Koukis, G., and Ziourkas, C. (1991). Slope instability phenomena in Greece: a statistical analysis. Bulletin of the International Association of Engineering Geology-Bulletin de l′Association Internationale de Géologie de l′Ingénieur, 43(1), 47-60.
Krahn, J., & Fredlund, D. G. (1972). On total, matric and osmotic suction. Soil Science, 114(5), 339-348.
Lambe, T.W., Whitman, R.V., (1979). Soil Mechanics. Wiley, New Delhi, p. 553.
Liu, Y. C., & Chen, C. S. (2007). A new approach for application of rock mass classification on rock slope stability assessment. Engineering geology, 89(1-2), 129-143.
Morgenstern, N. R., (1997).“Toward landslide risk assessment in practice.” In: Cruden and Fell (eds.) Landslide risk assessment, 15-24, Balkema, Rotterdam.
Ray, R. L., Jacobs, J. M., & de Alba, P. (2010). Impacts of unsaturated zone soil moisture and groundwater table on slope instability. Journal of geotechnical and geoenvironmental engineering, 136(10), 1448-1458.
Shui-Beih Yu, Horng-Yue Chen, Long-Chen Kuo,Velocity field of GPS stations in the Taiwan area, Tectonophysics,Volume 274, Issues 1–3,1997,
Sidle, R., and Ochiai, H. (2006). Processes, prediction, and land use. Water resources monograph. American Geophysical Union, Washington, 525.
Skempton, A. W., and De Lory, F. A. (1957). Stability of natural slopes in London clay. Thomas Telford Publishing, London, UK, 15, 378-381.
Spencer, E. (1967). A method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique, 17(1), 11-26.
Terzaghi, K. (1950). Mechanism of landslides.
Uang, C. M., Yu, Q. S., Sadre, A., Bonowitz, D., Youssef, N., & Vinkler, J. (1997). Seismic response of an instrumented 13-story steel frame building damaged in the 1994 Northridge earthquake. Earthquake spectra, 13(1), 131-149.
Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E., & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian geotechnical journal, 33(3), 379-392.
Varnes, D.J. (1978) Slope Movement Types and Processes. In: Schuster, R.L. and Krizek, R.J., Eds., Landslides, Analysis and Control, Transportation Research Board, Special Report No. 176, National Academy of Sciences, 11-33.
Wellmann, J. F., Horowitz, F. G., Schill, E., & Regenauer-Lieb, K. (2010). Towards incorporating uncertainty of structural data in 3D geological inversion. Tectonophysics, 490(3-4), 141-151.
Yeh, C. H., Dong, J. J., Khoshnevisan, S., Juang, C. H., Huang, W. C., & Lu, Y. C. (2021). The role of the geological uncertainty in a geotechnical design–A retrospective view of Freeway No. 3 Landslide in Northern Taiwan. Engineering Geology, 291, 106233.
Zimmermann, H. J. (2000). An application-oriented view of modeling uncertainty. European Journal of Operational Research, 122(2), 190-198.
指導教授 鐘志忠(Chung-Chih Chung) 審核日期 2023-1-17 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare