博碩士論文 110322035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.226.88.134
姓名 江富誠(Fu-Cheng Chiang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 斷層錯動對地表不同基礎結構物的影響
(The effects of fault slipping on the buildings with different foundation types)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具裂縫的緩衝材料自癒行為模擬★ 具不同上部結構之樁基礎受振行為
★ 基盤土壤液化對上方土堤位移的影響★ 回填與緩衝材料之動態強度
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-30以後開放)
摘要(中) 斷層錯動常伴隨著地表變形,造成結構物以及生命財產的損失。過去國內外已有單一土層、複合土層與不同基礎型式的斷層相關研究,並訂定相關法規,但沒有考量建築物高度對於結構物受斷層錯動的影響程度。本研究探討建築物高度於複合土層受斷層錯動的建築物行為,透過本研究成果,建議未來試驗設計能有更周全的考量,以保障人民生命財產安全。
本研究於80倍地球重力場之離心力場下比較12組離心模型試驗結果,以60度斷層傾角模擬正、逆斷層錯動,探討不同建築物高度、接觸應力及基礎型式之建築物傾斜量、位移及地下管線的變形行為。土層總厚度(H)為8 m,底層為水泥混石英砂之複合材料,表層為石英砂層,其土層厚度比為7:3。模型基礎型式分為淺基礎與樁基礎,建築物高度為9.6 m及3.6 m,與地盤間之接觸應力為48 kPa及27 kPa。地下維生管線以直徑0.16 m、長度58.56 m之鋁線模擬,埋置深度為0.8 m。
試驗結果顯示,在相同接觸應力的條件下,建築物高度會影響結構物受斷層錯動的行為;土層的行為會受到不同接觸應力以及基礎型式的影響,但不受建築物樓高的影響;在逆斷層淺基礎建築物試驗中,接觸應力越大,則地表影響範圍越小,軟岩層最多減少30%H(約30%)影響區域,砂土層最多減少34%H(約14%)影響區域;在逆斷層試驗中,設置樁基礎之地表影響範圍會比淺基礎型式少,軟岩層最多減少60%H(約60%)影響區域,砂土層最多減少66%H(約27%)影響區域;地下管線於正斷層試驗中,上盤段會露出地表;逆斷層試驗中,管線則隨著地表變化而變形。
摘要(英) The loss of structures, life and property usually cause by the fault slipping. In the past, there have been researches on single soil layers, composite soil layers, and the different foundation types by fault slip. Relevant regulations have been formulated. But the influence of building height during fault slipping has not been considered. This study focus on the behavior of building height whose is affected by fault in the composite soil layer. Through the results of this study, it is suggested that future experimental designs should be more comprehensively considered to protect people′s lives and property.
In this study, twelve centrifuge modeling tests are conducted to investigate the behavior of different building heights, contact pressures, foundation types of buildings, and lifeline deformation during fault slip with the dip angle of 60 degrees under 80 g centrifuge acceleration field. Silica sand and cemented sand are used to prepare the total thickness (H) of the 8 m soil stratum. The thickness ratio of the soil stratum between cemented sand and sandy layer is 7:3. The height of the higher building is 9.6 m and the contact pressure is 48 kPa. The heights of the lower buildings are 3.6 m with different contact pressure are 27 kPa and 48 kPa, respectively. There are two types of foundations for the buildings. One is shallow foundation; the other is pile foundation. An aluminum pipeline is embedded at the depth of 0.8 m to simulate the prototypal length of 58.56 m and diameter of 0.16 m lifeline.
The test results show that in the same contact stress condition, the height of the building will affect the behavior of the structure by fault slipping. The behavior of the soil layer will be affected by different contact stress and foundation type, but not affected by the height of the building. The shallow foundation building in the reverse fault test, the greater the contact stress, the smaller the influence area, the soft rock layer can reduce the influence area by 30%H at most, and the sand layer can reduce the influence area by 34%H at most. In the reverse fault test, the influence area of pile foundation types will be less than that of the shallow foundation type, the soft rock layer can reduce the influence area by 60%H at most, and the sand layer can reduce the influence area by 66%H at most. The underground pipeline in the normal fault test, the hanging wall section will be exposed to the surface. In the reverse fault test, the pipeline deforms as the surface changes.
關鍵字(中) ★ 正斷層
★ 逆斷層
★ 建築物高度
★ 接觸應力
★ 離心模型試驗
★ 複合土層
關鍵字(英) ★ normal fault
★ reverse fault
★ contact pressure
★ building height
★ centrifuge modeling
★ multiple soil strata
論文目次 摘要 i
Abstract ii
致謝 iv
圖目錄 viii
表目錄 xi
符號說明 xiii
一、 緒論 1
1-1 研究動機與目的 1
1-2 研究方法 2
1-3 論文架構 2
二、 文獻回顧 4
2-1 斷層概述 4
2-1-1 活動斷層定義與分類 4
2-1-2 活動斷層調查方法 5
2-1-3 破裂型態 6
2-2 現地案例 6
2-3 國內相關法規 11
2-4 物理模型 13
2-4-1 1 g模型試驗 13
2-4-2 離心模型試驗 13
2-5 離心模型原理 18
2-5-1 離心模型之縮尺律(scaling law) 19
2-5-2 離心模型之限制 20
三、 離心模型試驗設備與試驗步驟 22
3-1 試驗儀器與設備 22
3-1-1 地工離心機 22
3-1-2 資料擷取系統 25
3-1-3 斷層模擬試驗箱 26
3-1-4 地表高程掃描裝置 28
3-1-5 雷射位移感測器(LDT) 29
3-1-6 線性可變差動變壓器(LVDT) 29
3-1-7 攝影系統 31
3-1-8 移動式霣降儀 32
3-2 試驗材料 33
3-2-1 石英細砂 33
3-2-2 金鋼砂 35
3-2-3 水泥混石英細砂 36
3-3 建築物模型設計與管線 39
3-4 試驗前準備與試驗步驟 44
3-4-1 試驗前保養及準備工作 44
3-4-2 試體製作 45
3-4-3 試體安裝 46
3-4-4 試驗過程 47
四、 試驗內容與結果討論 48
4-1 試驗內容 48
4-2 試驗數據相關名詞與定義 50
4-3 試驗結果 53
4-3-1 一樓層正斷層淺基礎試驗結果(NS_1F) 53
4-3-2 較高載重的一樓層正斷層淺基礎試驗(NS_1FH) 60
4-3-3 一樓層正斷層樁基礎試驗(NP_1F) 65
4-3-4 較高載重的一樓層正斷層樁基礎試驗(NP_1FH) 71
4-3-5 一樓層逆斷層淺基礎試驗(RS_1F) 77
4-3-6 較高載重的一樓層逆斷層淺基礎試驗(RS_1FH) 84
4-3-7 一樓層逆斷層樁基礎試驗(RP_1F) 90
4-3-8 較高載重的一樓層逆斷層樁基礎試驗(RP_1FH) 96
4-4 試驗結果討論 104
4-4-1 建築物傾斜量 104
4-4-2 建築物水平位移量 110
4-4-3 剪裂帶發展 115
4-4-4 地表影響範圍 123
4-4-5 地下管線 129
五、 結論與建議 131
5-1 結論 131
5-2 建議 132
六、 參考文獻 133
參考文獻 [1] 中華民國大地工程學會,建築物基礎構造設計規範,中華民國大地工程學會(2001)。
[2] 中華民國內政部營建署,建築技術規則,中華民國內政部營建署(2008)。
[3] 李崇正,「離心模型試驗在大地工程之應用」,地工技術,第36集,第76-91頁(1991)。
[4] 李崇正,「模型試驗在大地工程教學的應用」,土木水利,第30卷,第4期,第89-92頁(2003)。
[5] 李錫堤、康耿豪、鄭錦桐、廖啟雯,「921集集大地震之地表破裂及地盤變形現象」,地工技術,第81期,第5-16頁(2000)。
[6] 張徽正、林啟文、陳勉銘、盧詩丁,「臺灣活動斷層分布圖說明書」,經濟部中央地質調查所特刊,第10號(1998)。
[7] 林啟文、劉彥求、周稟珊、林燕慧,「臺灣活動斷層調查的近期發展」,經濟部中央地質調查所彙刊,第34號,第1-40頁(2021)。
[8] 林啟文、陳文山、饒瑞鈞,「台灣活動斷層調查地近期發展」,經濟部中央地質調查所特刊,第18號,第85-110頁(2007)。
[9] 林銘郎、李崇正、黃文正、黃文昭,「活動斷層近地表變形特性研究」,經濟部中央地質調查所報告,第9號,臺北,臺灣(2011)。
[10] 洪汶宜、李崇正、張有毅、黃文昭、黃文正、林銘郎、林燕慧,「以離心模型試驗探討正逆斷層引致的地表變形與剪裂帶發展」,經濟部中央地質調查所特刊,第28號,第129-151頁(2014)。
[11] 盧詩丁、陳柏村、許晉瑋,「臺灣活動斷層研究及未來發展」,大地技師,第15期,第14-25頁(2017)。
[12] 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,博士論文,國立中央大學土木工程學系,桃園,臺灣(2013)。
[13] 張庭傑,「以離心模型模擬正斷層及逆斷層通過複合土層引致的地表變形特性」,碩士論文,國立中央大學土木工程學系,桃園,臺灣(2014)。
[14] 楊宗翰,「具不同上部結構之樁基礎受振行為」,碩士論文,國立中央大學土木工程學系,桃園,臺灣(2014)。
[15] 鍾春富,「逆斷層錯動引致上覆土層變形行為及對結構物影響之研究」,博士論文,國立臺灣大學土木工程學系,臺北,臺灣(2007)。
[16] 鍾承哲,「斷層錯動引致地表構造物與管線位移之模擬」,碩士論文,國立中央大學土木工程學系,桃園,臺灣(2021)。
[17] Ahmadi, M., Moosavi, M., and Jafari, M. K., “Experimental investigation of reverse fault rupture propagation through wet granular soil,” Engineering Geology, Vol. 239, pp. 229-240 (2018).
[18] Ashtiani, M., Ghalandarzadeh, A., and Towhata, I., “Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture,” Canadian Geotechnical Journal, Vol. 53, No. 3, pp. 505-519 (2016).
[19] Bieniawski, Z. T., “The design process in rock engineering,” Rock Mechanics and Rock Engineering, Vol. 17, pp. 183-190 (1984).
[20] Bjerrum, I., “Allowable Settlement of Structures,” Proceedings of European Conf. on Soil Mech. and Found. Eng., Weisbaden, Germany, Vol. 2, pp. 35-137 (1963).
[21] Bonilla, M. G., “Evaluation of potential surface faulting and other tectonic deformation,” U.S. Geological Survey, Open-File Report 82-732 (1982).
[22] Bransby, M. F., Davies, M. C. R., and Nahas, A. El., “Centrifuge modeling of normal fault-foundation interaction,” Bulletin of Earthquake Engineering, Vol. 6, pp. 585-605 (2008a).
[23] Bransby, M. F., Davies, M. C. R., and Nahas, A. El., “Centrifuge modeling of reverse fault-foundation interaction,” Bulletin of Earthquake Engineering, Vol. 6, pp. 607-628 (2008b).
[24] Bray, J. D., Seed, R. B., Cluff, L. S., and Seed, H. B., “Earthquake fault rupture propagation through soil,” Journal of Geotechnical Engineering, Vol. 120, No. 3, pp.543–561 (1994).
[25] Bray, J. D., Seed, R. B., and Seed, H. B., “Analysis of earthquake fault ruptures propagation through cohesive soil,” Journal of geotechnical engineering, Vol. 120, pp. 562-580 (1994b).
[26] Chen, W. S., Lee, K. J., Lee, L. S., Streig, A. R., Rubin, C. M., Chen, Y. G., Yang, H. C., Chang, H. C., and Lin, C. W., “Paleoseismic evidence for coseismic growth-fold in the 1999 Chichi earthquake and earlier earthquakes, central Taiwan,” Journal of Asian Earth Sciences, Vol 31, pp. 204-213 (2007).
[27] Cole, D. A., and Lade, P. V., “Influence zones in alluvium over dip-slip faults,” Journal of geotechnical engineering, Vol. 110, pp. 599-615 (1984)
[28] Demirci, H. E., Bhattacharya, S., Karamitros, D., and Alexander, N., “Experimental and numerical modelling of buried pipelines crossing reverse faults,” Soil Dynamics and Earthquake Engineering, Vol.114, pp. 198-214 (2018).
[29] ISRM, “Suggested methods for determining tensile strength of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15 No. 3, pp. 99-103 (1978).
[30] Karamitros, D. K., Bouckovalas, G. D., and Kouretzis, G. P., “Stress analysis of buried steel pipelines at strike-slip fault crossings,” Soil Dynamics and Earthquake Engineering, Vol. 27, pp. 200–211 (2007).
[31] Kelson, K. I., Kang, K. H., Page W.D., Lee, C. T., and Cluff, L. S., “Representative Styles of Deformation along the Chelungpu Fault from the 1999 Chi-Chi (Taiwan) Earthquake: Geomorphic Characteristics and Responses of Man-Made Structures,” Bulletin of the Seismological Society of America, Vol. 91, No. 5, pp. 930-952 (2001).
[32] Kelson, K. I., Harder, L. F., Kishida, T., Ryder, I., “Preliminary Observations of Surface Fault Rupture from the April 11, 2011 Mw6.6 Hamadoori Earthquake, Japan,” Geotechnical Extreme Events Reconnaissance, No. GEER-025D (2011).
[33] Lee, J. W., Hamada, M., Tabuchi, G., and Suzuki, K., “Prediction of fault rupture propagation based on physical tests in sandy soil deposit,” 13th World Conference on Earthquake Engineering, B.C., Canada, Paper No. 119 (2004).
[34] Li, C. Y., Wei, Z. Y., Ye, J. Q., Han, Y. B., and Zheng, W. J., “Amounts and styles of coseismic deformation along the northern segment of surface rupture, of the 2008 Wenchuan Mw 7.9 earthquake, China,” Tectonophysics, Vol. 491, pp. 35-58 (2010).
[35] Lin, M. L., Chung C. F., and Jeng F. S., “Deformation of overburden soil induced by thrust fault slip,” Engineering Geology, Vol. 88, pp. 70-89(2006)
[36] McCalpin, J. P., Paleoseismology, Academic Press, USA, pp.171-207 (2009).
[37] Rizkalla, M., and Read, R. S., “Pipeline geohazards planning, design, construction and operations,” ASME Press, New York, USA, pp. 390-443 (2019).
[38] Soegianto, D. P., “Centrifuge Modelling on Dip-Slip Fault Rupture Propagation in Multiple Soil Strata,” Master Thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan (2020).
[39] Takemura, J., Kusakabe, O., and Yao, C., “Development of a fault simulator for soils under large vertical stress in a centrifuge,” ICE, USA, Vol. 20, pp. 118-131 (2020).
[40] Taylor, R. N., “Geotechnical Centrifuge Technology,” CRC Press, USA, pp.19-33 (1994).
[41] Yao, C. F., Takemura, J., Zhang, J. C., “Centrifuge modeling of single pile-shallow foundation interaction in reverse fault,” Soil Dynamic and Earthquake Engineering, Vol. 141, 106538 (2021).
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2023-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明