博碩士論文 110223023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.149.251.155
姓名 陳宣妤(Hsuan-Yu Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 開發聚離子液體以綠色分析化學技術檢測環境水樣中防曬乳成分殘留之研究
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以液相層析質譜儀檢測水樣與生物檢體中 全氟界面活性劑之濃度
★ 利用液相層析串聯質譜技術檢測水環境中藥物殘留物之方法開發與應用★ 直鏈式烷基苯基二甲基銨鹽類陽離子型界面活性劑在水環境中微量檢測方法的研究
★ 芳香族磺酸鹽類有機污染物在水環境中的分析與研究★ 以固相萃取及氣相層析質譜儀對水環境中壬基苯酚類 持久性有機污染物之分析與研究
★ 以固相萃取法及氣相層析質譜儀對水環境中動情激素類有機污染物之分析與研究★ 利用熱裂解直接高溫衍生化法快速分析直鏈式烷基三甲基銨鹽之方法建立與探討
★ 利用感應偶合電漿質譜儀檢測半導體製程用化學品中微量金屬不純物之分析研究★ 應用毛細管電泳間接偵測方法分離四級銨鹽界面活性劑
★ 利用毛細管電泳結合線上濃縮方法分離奈磺酸鹽之機制探討★ 快速分析水環境中醫療藥品殘留物之研究與探討
★ 以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究★ 以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發
★ 以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研究★ 以氣相層析質譜儀檢測具荷爾蒙效應添加劑之方法開發與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 本研究之待測物,防曬乳成分–二苯甲酮類化合物(Benzophenones, 簡稱BPs),此類化合物能夠吸收紫外線作為防曬成分,因此被廣泛應用於個人護理產品、食品包裝塗料等民生用品中,然而BPs屬於內分泌干擾物質(Endocrine disrupting chemicals, 簡稱EDCs ),隨著其使用量的增加,造成的污染範圍也隨之擴展進入到環境中,對環境及人體造成的累積性危害也逐漸受到各方矚目。
因此,開發出一種靈敏度高、簡單、高效,用以檢測環境水樣中六種防曬乳成分殘留,且符合綠色化學之分析方法。本研究以聚離子液體為塗層材料作為攪拌子吸附萃取法中之新穎吸附劑,其具有熔點低、熱穩定性佳、可回收再利用、對環境友善等優點,且具有結構調控性,研究中選擇咪唑型陽離子及PF6-陰離子作為聚合物單體組成,提高吸附劑在水中的穩定性,搭配超高效液相層析儀串聯電灑游離法(+)四極桿飛行時間式質譜儀(UHPLC-ESI(+)-QTOF-MS),並以高解析汲取離子層析圖模式增加解析度。
實驗條件以單因子最佳化及實驗設計軟體Box-Behnken Design (BBD),利用BBD中的變異數分析(ANOVA)進行萃取條件最佳化。獲得最佳條件為:以聚離子液體P(C10ImPF6)作為吸附劑塗層,於20 mL水樣中進行吸附90分鐘,攪拌速度600 rpm,脫附溶劑為1 mL甲醇,以Vortex方式脫附1分鐘後,吹氮濃縮至0.1 mL,最後將3 μL萃取物注入 UHPLC-QTOF-MS 進行檢測分析,濃縮倍率達200倍,提高分析靈敏度。
本研究所開發之方法P(C10ImPF6)-SBSE,偵測極限LOD為0.025至3 ng/mL,Intra day及Inter day的相對標準偏差RSD ≤ 4%,萃取回收率介於93% 至104%之間,由結果可知本方法呈現良好穩定性及再現性。最後以P(C10ImPF6)-SBSE結合UHPLC-ESI(+)-QTOF-MS進行真實環境水樣中防曬乳成分殘留之檢測,包括校內百花川及中大湖、南崁溪上下游,成功檢測待測物BP-3之殘留。
摘要(英) In this study, benzophenone-type (BPs) ultraviolet (UV)-filters are used as the analysis object, which can absorb UV radiation as sunscreen ingredients, so they are widely used in personal care products, food-packed coatings and other household products. However, BPs belong to endocrine disrupting chemicals (EDCs), with the increase of their usage, the scope of contaminants will also expand into the environment. They have also gradually attracted much public attention of all parties, due to the cumulative harm to the ecosystems and human body.
Therefore, a high-sensitivity, simple, and efficient analytical method for detecting the residues of six BPs UV-filters in environmental water samples, which comply with developed green chemistry. In this study, polyionic liquid (PIL) was used as the coating material as a novel adsorbent in the stir bar sorptive extraction (SBSE) method, which has the advantages of low melting point, good thermal stability, recyclability, structure controllability and environmental friendliness. Imidazolium cation and (PF6-) hexafluorophosphate anion as a polymer monomer composition, improve the stability of the adsorbent in water. Ultra-high performance liquid chromatography and electrospray ionization(+)-quadrupole time-of-flight mass spectrometry (UHPLC-ESI(+)-QTOF-MS) was applied for detection and quantitation coupled with high-resolution extracted ion chromatogram mode to increase the sensitivity.
The experimental conditions were optimized by one-factor at-a-time optimization and multivariate experimental design software Box-Behnken Design (BBD), and the extraction conditions were optimized by using the analysis of variance (ANOVA) in BBD. The best conditions were as follows: P(C10ImPF6) was used as the adsorbent coating, extracted in 20 mL water sample for 90 min, the stirring rate was 600 rpm, the desorption solvent was 1 mL methanol, and the desorption time was 1 min. Then, the extract was nitrogen sweeping to 0.1 mL, and finally 3 μL of the extract was directly injected into UHPLC-QTOF-MS for detection. The enrichment factor can be reached at 200-fold, which enhanced the analysis sensitivity.
The developed method P(C10ImPF6)-SBSE exhibited satisfactory linearity (R2 > 0.9957), favorable precision with Intra day and Inter day relative standard deviation (RSD%) were all less than 4%, and a limit of detection (LOD) ranging from 0.025 to 3 ng/mL, satisfactory extraction recovery ranging from 93% to 104%, the results show that the method presents good stability and reproducibility. Finally, the developed P(C10ImPF6)-SBSE method combined with UHPLC-ESI(+)-QTOF-MS was then successfully applied to detect BPs residues in environmental water samples.
關鍵字(中) ★ 聚離子液體
★ 攪拌子吸附萃取法
★ 二苯甲酮類化合物
★ 實驗設計
關鍵字(英) ★ Polyionic liquid (PIL)
★ Stir Bar Sorption Extraction (SBSE)
★ Benzophenones (BPs)
★ Design of experiment
論文目次 摘要 i
Abstract iii
謝誌 v
圖目錄 x
表目錄 xi
第一章 前言 1
1-1研究緣起 1
1-2研究目標 2
第二章 文獻回顧 3
2-1聚離子液體材料 3
2-1-1聚離子液體材料簡介 3
2-1-2離子液體的應用 4
2-1-3合成方法 5
2-1-4咪唑型聚離子液體 5
2-2攪拌子吸附萃取法(Stir bar sorptive extraction, 簡稱SBSE) 8
2-2-1前言 8
2-2-2原理 9
2-3防曬乳成分(UV filters) 11
2-3-1二苯甲酮類化合物(Benzophenones, 簡稱BPs) 11
2-3-2對環境及人體的影響 12
2-3-3相關法規 12
2-4相關文獻 13
第三章 實驗步驟與樣品分析 17
3-1實驗藥品與設備 17
3-1-1實驗藥品 17
3-1-2儀器設備 18
3-2實驗步驟 19
3-2-1聚離子液體材料合成 19
3-2-1-1單體合成 19
3-2-1-2離子交換 20
3-2-1-3聚合反應 22
3-2-2標準品配製 24
3-2-3超高效液相層析串聯質譜儀參數 25
3-2-4質量校正 26
3-2-5攪拌子吸附萃取法 27
3-2-5-1攪拌子製作 27
3-2-5-2攪拌子吸附萃取法流程 27
3-2-6樣品來源 28
第四章 結果與討論 29
4-1聚離子液體材料合成 29
4-1-1單體合成 29
4-1-2離子交換 29
4-1-3聚合反應 30
4-2聚離子液體材料性質探討 31
4-2-1高解析核磁共振儀NMR 31
4-2-2 傅立葉轉換紅外光譜儀FT-IR 32
4-2-3凝膠滲透層析儀GPC 32
4-2-4 超高解析冷場發射掃描式電子顯微鏡CFE-SEM 34
4-2-5 熱重分析儀TGA 35
4-2-6 P(C10ImPF6)材料吸附劑之重複使用率之探討 36
4-3 UHPLC-QTOF-MS對待測物之測定 37
4-3-1待測物分析及其層析圖 37
4-3-2待測物之質譜圖 38
4-4攪拌子吸附萃取法最佳化條件探討 39
4-4-1單因子最佳化探討 39
4-4-1-1吸附劑選擇 39
4-4-1-2吸附過程之吸附時間 40
4-4-1-3吸附過程之攪拌速度 41
4-4-1-4脫附過程之脫附溶劑 42
4-4-1-5脫附過程之脫附時間 43
4-4-1-6脫附過程之脫附方式 44
4-4-2實驗設計 45
4-4-2-1 BBD與結果 45
4-4-2-2因子間交互作用力探討 48
4-4-2-3殘差分布圖 50
4-4-2-4最佳化條件結果 52
4-5檢量線與偵測極限 53
4-6方法準確度與精密度 54
4-7真實樣品檢測 55
4-8 Analytical Eco-Scale 59
第五章 結論 63
第六章 參考文獻 65
參考文獻 .衛生福利部,衛授字第1071608162號,2018
.Almeida, C., Stępkowska, A., Alegre, A., & Nogueira, J. M. F. (2013). Determination of trace levels of benzophenone-type ultra-violet filters in real matrices by bar adsorptive micro-extraction using selective sorbent phases. Journal of Chromatography A, 1311, 1-10.
.Anadón, A., Bell, D., Binderup, M.L., Bursch, W., Castle, L., Crebelli, R., Engel, K.H., Franz, R., Gontard, N., Haertlé, T., Husøy, T., Jany, K.D., Leclercq, C., Lhuguenot, J.C., Mennes, W., Milana, M.R., Pfaff, K., Svensson, K., Toldrá, F., Waring, R., & Wölfle, D. (2009). Toxicological evaluation of benzophenone. The EFSA Journal, 1104, 1-30.
.Benedé, J. L., Anderson, J. L., & Chisvert, A. (2018). Trace determination of volatile polycyclic aromatic hydrocarbons in natural waters by magnetic ionic liquid-based stir bar dispersive liquid microextraction. Talanta, 176, 253-261.
.Benedé, J. L., Chisvert, A., Giokas, D. L., & Salvador, A. (2016). Stir bar sorptive-dispersive microextraction mediated by magnetic nanoparticles–nylon 6 composite for the extraction of hydrophilic organic compounds in aqueous media. Analytica Chimica Acta, 926, 63-71.
.Benedé, J. L., Chisvert, A., Salvador, A., Sánchez-Quiles, D., & Tovar-Sánchez, A. (2014). Determination of UV filters in both soluble and particulate fractions of seawaters by dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Analytica Chimica Acta, 812, 50-58.
.Berton, P., Siraj, N., Das, S., de Rooy, S., Wuilloud, R. G., & Warner, I. M. (2020). Efficient low-cost procedure for microextraction of estrogen from environmental water using magnetic ionic liquids. Molecules, 26(1), 32.
.Bogunović, M., Marjanović, T., & Ivančev-Tumbas, I. (2021). Fate of benzophenone, benzophenone-3 and caffeine in lab-scale direct river water treatment by hybrid processes. International Journal of Environmental Research and Public Health, 18(16), 8691.
.Box, G. E., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455-475.
.Cao, Y., & Mu, T. (2014). Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Industrial & Engineering Chemistry Research, 53(20), 8651-8664.
.Casado-Carmona, F. A., del Carmen Alcudia-Leon, M., Lucena, R., Cardenas, S., & Valcarcel, M. (2016). Magnetic nanoparticles coated with ionic liquid for the extraction of endocrine disrupting compounds from waters. Microchemical Journal, 128, 347-353.
.Celeiro, M., Acerbi, R., Kabir, A., Furton, K. G., & Llompart, M. (2020). Development of an analytical methodology based on fabric phase sorptive extraction followed by gas chromatography-tandem mass spectrometry to determine UV filters in environmental and recreational waters. Analytica Chimica Acta: X, 4, 100038.
.Chisvert, A., Benedé, J. L., Anderson, J. L., Pierson, S. A., & Salvador, A. (2017). Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction. Analytica Chimica Acta, 983, 130-140.
.Chum, H. L., Koch, V. R., Miller, L. L., & Osteryoung, R. A. (1975). Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. Journal of the American Chemical Society, 97(11), 3264-3265.
.Corada-Fernández, C., Candela, L., Torres-Fuentes, N., Pintado-Herrera, M. G., Paniw, M., & González-Mazo, E. (2017). Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain). Science of The Total Environment, 605, 770-783.
.Cruz-Vera, M., Lucena, R., Cárdenas, S., & Valcárcel, M. (2009). One-step in-syringe ionic liquid-based dispersive liquid–liquid microextraction. Journal of Chromatography A, 1216(37), 6459-6465.
.Dias, A. N., da Silva, A. C., Simão, V., Merib, J., & Carasek, E. (2015). A novel approach to bar adsorptive microextraction: Cork as extractor phase for determination of benzophenone, triclocarban and parabens in aqueous samples. Analytica Chimica Acta, 888, 59-66.
.Fresco-Cala, B., & Cárdenas, S. (2018). Nanostructured hybrid monolith with integrated stirring for the extraction of UV-filters from water and urine samples. Talanta, 182, 391-395.
.Galindo, M. V., da Silva Oliveira, W., & Godoy, H. T. (2021). Multivariate optimization of low-temperature cleanup followed by dispersive solid-phase extraction for detection of Bisphenol A and benzophenones in infant formula. Journal of Chromatography A, 1635, 461757.
.Gałuszka, A., Migaszewski, Z. M., Konieczka, P., & Namieśnik, J. (2012). Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry, 37, 61-72.
.Ge, D., Zhang, Y., Dai, Y., & Yang, S. (2018). Air‐assisted dispersive liquid–liquid microextraction based on a new hydrophobic deep eutectic solvent for the preconcentration of benzophenone‐type UV filters from aqueous samples. Journal of Separation Science, 41(7), 1635-1643.
.Ghambari, H., Reyes-Gallardo, E. M., Lucena, R., Saraji, M., & Cárdenas, S. (2019). Magnetic polyamide nanocomposites for the microextraction of benzophenones from water samples. Molecules, 24(5), 953-966.
.Giokas, D. L., Salvador, A., & Chisvert, A. (2007). UV filters: From sunscreens to human body and the environment. TrAC Trends in Analytical Chemistry, 26(5), 360-374.
.Han, Y., Yang, C., Zhou, Y., Han, D., & Yan, H. (2017). Ionic liquid–hybrid molecularly imprinted material–filter solid-phase extraction coupled with HPLC for determination of 6-benzyladenine and 4-chlorophenoxyacetic acid in bean sprouts. Journal of Agricultural and Food Chemistry, 65(8), 1750-1757.
.Hu, L., Tian, M., Feng, W., He, H., Wang, Y., & Yang, L. (2019). Sensitive detection of benzophenone-type ultraviolet filters in plastic food packaging materials by sheathless capillary electrophoresis–electrospray ionization–tandem mass spectrometry. Journal of Chromatography A, 1604, 460469.
.Huang, Y. F., Chang, J. P., Chen, H. C., & Huang, Y. M. (2021). Simultaneous trace analysis of 10 benzophenone-type ultraviolet filters in fish through liquid chromatography–tandem mass spectrometry. Environmental Pollution, 286, 117306.
.Hurley, F. H., & Wier, T. P. (1951). Electrodeposition of metals from fused quaternary ammonium salts. Journal of The Electrochemical Society, 98(5), 203.
.Kawaguchi, M., Ito, R., Endo, N., Sakui, N., Okanouchi, N., Saito, K., ... & Nakazawa, H. (2006). Stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry for trace analysis of benzophenone and its derivatives in water sample. Analytica Chimica Acta, 557(1-2), 272-277.
.Kharissova, O. V., Kharisov, B. I., Oliva González, C. M., Méndez, Y. P., & López, I. (2019). Greener synthesis of chemical compounds and materials. Royal Society Open Science, 6(11), 191378.
.Kotnik, K., Kosjek, T., Krajnc, U., & Heath, E. (2014). Trace analysis of benzophenone-derived compounds in surface waters and sediments using solid-phase extraction and microwave-assisted extraction followed by gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 406, 3179-3190.
.Kunisue, T., Chen, Z., Buck Louis, G. M., Sundaram, R., Hediger, M. L., Sun, L., & Kannan, K. (2012). Urinary concentrations of benzophenone-type UV filters in US women and their association with endometriosis. Environmental Science & Technology, 46(8), 4624-4632.
.Li, N., Zhu, Q., Yang, Y., Huang, J., Dang, X., & Chen, H. (2015). A novel dispersive solid-phase extraction method using metal-organic framework MIL-101 as the adsorbent for the analysis of benzophenones in toner. Talanta, 132, 713-718.
.Li, P., Lu, Y., Cao, J., Li, M., Yang, C., & Yan, H. (2020). Imidazolium ionic-liquid-modified phenolic resin for solid-phase extraction of thidiazuron and forchlorfenuron from cucumbers. Journal of Chromatography A, 1623, 461192.
.Liao, C., & Kannan, K. (2014). Widespread occurrence of benzophenone-type UV light filters in personal care products from China and the United States: an assessment of human exposure. Environmental Science & Technology, 48(7), 4103-4109.
.Liu, C., Liao, Y., & Huang, X. (2017). Extraction of triazole fungicides in environmental waters utilizing poly (ionic liquid)-functionalized magnetic adsorbent. Journal of Chromatography A, 1524, 13-20.
.Liu, H., Dai, J., Zhou, J., Huang, H., Chen, F., & Liu, Z. (2015). A hybrid ionic liquid–matrix material,[TiO2–Si–NH3+][CHC−], as a novel matrix for the analysis of small molecules by MALDI-TOF MS. International Journal of Mass Spectrometry, 376, 85-89.
.Liu, X., Chen, P., Wang, L., Wang, C., Zhao, M., & Fu, J. (2021). Polydimethylsiloxane/ionic liquid sponge used in headspace solid‐phase extraction coupled with GC–MS for rapid analysis of essential oil in lavender. Biomedical Chromatography, 35(3), e4992.
.Mao, F., You, L., Reinhard, M., He, Y., & Gin, K. Y. H. (2018). Occurrence and fate of benzophenone-type UV filters in a tropical urban watershed. Environmental Science & Technology, 52(7), 3960-3967.
.Mecerreyes, D. (2011). Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 36(12), 1629-1648.
.Merib, J., Spudeit, D. A., Corazza, G., Carasek, E., & Anderson, J. L. (2018). Magnetic ionic liquids as versatile extraction phases for the rapid determination of estrogens in human urine by dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection. Analytical and Bioanalytical Chemistry, 410, 4689-4699.
.Nakajima, D., Asada, S., Kageyama, S., Yamamoto, T., Kuramochi, H., Tanaka, N., ... & Goto, S. (2006). Activity related to the carcinogenicity of plastic additives in the benzophenone group. Journal of UOEH, 28(2), 143-156.
.Negreira, N., Rodríguez, I., Ramil, M., Rubí, E., & Cela, R. (2009). Solid-phase extraction followed by liquid chromatography–tandem mass spectrometry for the determination of hydroxylated benzophenone UV absorbers in environmental water samples. Analytica Chimica Acta, 654(2), 162-170.
.Nguyen, K. T., Scapolla, C., Di Carro, M., & Magi, E. (2011). Rapid and selective determination of UV filters in seawater by liquid chromatography–tandem mass spectrometry combined with stir bar sorptive extraction. Talanta, 85(5), 2375-2384.
.Nuckowski, Ł., Zalesińska, E., Dzieszkowski, K., Rafiński, Z., & Studzińska, S. (2021). Poly(ionic liquid)s as new adsorbents in dispersive micro-solid-phase extraction of unmodified and modified oligonucleotides. Talanta, 221, 121662.
.Pintado-Herrera, M. G., González-Mazo, E., & Lara-Martín, P. A. (2013). Environmentally friendly analysis of emerging contaminants by pressurized hot water extraction–stir bar sorptive extraction–derivatization and gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 405, 401-411.
.Ramos, S., Homem, V., & Santos, L. (2019). Simultaneous determination of synthetic musks and UV-filters in water matrices by dispersive liquid-liquid microextraction followed by gas chromatography tandem mass-spectrometry. Journal of Chromatography A, 1590, 47-57.
.Ramos, S., Homem, V., & Santos, L. (2021). Modified dispersive solid‐phase extraction and cleanup followed by GC‐MS/MS analysis to quantify ultraviolet filters and synthetic musk compounds in soil samples. Journal of Separation Science, 44(16), 3107-3116.
.Ren, X., Zhang, K., Gao, D., Fu, Q., Zeng, J., Zhou, D., ... & Xia, Z. (2018). Mixed-mode liquid chromatography with a stationary phase co-functionalized with ionic liquid embedded C18 and an aryl sulfonate group. Journal of Chromatography A, 1564, 137-144.
.Rodil, R., Moeder, M. (2008). Development of a method for the determination of UV filters in water samples using stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry. Journal of Chromatography A, 1179(2), 81-88.
.Rodríguez-Gómez, R., Zafra-Gómez, A., Camino-Sánchez, F. J., Ballesteros, O., & Navalón, A. (2014). Gas chromatography and ultra high performance liquid chromatography tandem mass spectrometry methods for the determination of selected endocrine disrupting chemicals in human breast milk after stir-bar sorptive extraction. Journal of Chromatography A, 1349, 69-79.
.Rodríguez-Gómez, R., Zafra-Gómez, A., Dorival-García, N., Ballesteros, O., & Navalón, A. (2015). Determination of benzophenone-UV filters in human milk samples using ultrasound-assisted extraction and clean-up with dispersive sorbents followed by UHPLC–MS/MS analysis. Talanta, 134, 657-664.
.Romson, J., & Emmer, Å. (2021). Mass calibration options for accurate electrospray ionization mass spectrometry. International Journal of Mass Spectrometry, 467, 116619.
.Seddon, K. R., Stark, A., & Torres, M. J. (2000). Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 72(12), 2275-2287.
.Shahriman, M. S., Mohamad, S., Zain, N. N. M., Alias, Y., Chandrasekaram, K., & Raoov, M. (2021). based polymeric ionic liquid for thin film micro extraction of sulfonamides in environmental water samples prior to HPLC-DAD analysis. Microchemical Journal, 171, 106798.
.Shrivas, K., & Tapadia, K. (2015). Ionic liquid matrix-based dispersive liquid–liquid microextraction for enhanced MALDI–MS analysis of phospholipids in soybean. Journal of Chromatography B, 1001, 124-130.
.Tang, R., Chen, M. J., Ding, G. D., Chen, X. J., Han, X. M., Zhou, K., ... & Wang, X. R. (2013). Associations of prenatal exposure to phenols with birth outcomes. Environmental Pollution, 178, 115-120.
.Tarazona, I., Chisvert, A., León, Z., & Salvador, A. (2010). Determination of hydroxylated benzophenone UV filters in sea water samples by dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Journal of Chromatography A, 1217(29), 4771-4778.
.Tholey, A., & Heinzle, E. (2006). Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry—applications and perspectives. Analytical and Bioanalytical Chemistry, 386, 24-37.
.Walden, P. (1914). Molecular weights and electrical conductivity of several fused salts. Bulletin of the Russian Academy of Science, 405, 1800.
.Wang, C., Zhou, W., Liao, X., Li, W., & Chen, Z. (2020). Covalent immobilization of ionic liquid-based porous polymer onto poly (ether ether ketone) for stir bar sorptive extraction and its application in analysis of chlorophenoxy acid herbicides in soil. Talanta, 208, 120442.
.Wang, P., Zakeeruddin, S. M., Exnar, I., & Grätzel, M. (2002). High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chemical Communications, (24), 2972-2973.
.Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: context, process, and purpose. The American Statistician, 70(2), 129-133.
.Weisbrod, C. J., Kunz, P. Y., Zenker, A. K., & Fent, K. (2007). Effects of the UV filter benzophenone-2 on reproduction in fish. Toxicology and Applied Pharmacology, 225(3), 255-266.
.Wilkes, J. S., & Zaworotko, M. J. (1992). Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, (13), 965-967.
.Wu, L., Song, Y., Hu, M., Xu, X., Zhang, H., Yu, A., ... & Wang, Z. (2015). Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction high-performance liquid chromatography. Analytical and Bioanalytical Chemistry, 407, 569-580.
.Yang, L., Hu, Y., Wang, Q., Dong, Y., & Zhang, L. (2016). Ionic liquid-assisted electrochemical determination of pyrimethanil using reduced graphene oxide conjugated to flower-like NiCo2O4. Analytica Chimica Acta, 935, 104-112.
.Ye, L., Liu, J., Yang, X., Peng, Y., & Xu, L. (2011). Orthogonal array design for the optimization of ionic liquid‐based dispersive liquid–liquid microextraction of benzophenone‐type UV filters. Journal of Separation Science, 34(6), 700-706.
.Yu, Y., Zhu, W., Hua, L., Yang, H., Qiao, Y., Zhang, R., ... & Hou, Z. (2014). Ionic liquid-Pluronic P123 mixed micelle stabilized water-soluble Ni nanoparticles for catalytic hydrogenation. Journal of Colloid and Interface Science, 415, 117-126.
.Zhang, Y., & Lee, H. K. (2012). Ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of ultraviolet filters in environmental water samples. Analytica Chimica Acta, 750, 120-126.
.Zhang, Z., Ren, N., Li, Y. F., Kunisue, T., Gao, D., & Kannan, K. (2011). Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge. Environmental Science & Technology, 45(9), 3909-3916.
指導教授 丁望賢(Wang-Hsien Ding) 審核日期 2023-5-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明