博碩士論文 110324049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.119.161.161
姓名 張書瑜(Shu-Yu Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 過冷深共熔溶劑的異常濕潤行為
(Abnormal Wetting Behavior of Supercooled Deep Eutectic Solvents)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 在室溫下,研究了由氯化膽鹼和檸檬酸一水合物(CA)混合而成的深共熔溶劑(DES)在不同摩爾比下的過冷液體狀態。這種過冷的DES都非常穩定,其黏度皆超過104 mPa∙s,而且隨著CA含量的上升而增加。黏度對溫度的依賴性可以用阿瑞尼斯方程描述,其中活化能會隨著CA含量的增加而增加。由於其黏度極高,因此在使用懸滴法測量表面張力時,需要採用逐步加壓的方法,且液滴從鬆弛至達到平衡的過程非常緩慢。發現其表面張力非常高,與水相當,並且隨著CA濃度的增加,表面張力略有下降。過冷之DES在玻璃上的潤濕行為以異常緩慢的擴散過程為特徵。其平衡接觸角會隨著CA含量的上升而增加。此外,還研究了此過冷DES形成之液態橋梁在不同表面之間的潤濕競爭,有趣的是發現最終結果不僅取決於表面濕潤性,還取決於接觸時間。
摘要(英) The supercooled liquid state of a deep eutectic solvent (DES) composed of a mixture of choline chloride and citric acid monohydrate (CA) is studied for different molar ratios at room temperature. The supercooled DESs are highly stable and exhibit viscosities exceeding 104 mPa∙s, which increase with higher CA content. The dependence of the viscosity on temperature can be described by the Arrhenius equation, where the activation energy increases with CA content. Due to extremely high viscosity, the surface tension measurement using the pendant drop method requires a stepwise pressurization approach, and the relaxation to equilibrium is quite slow. Surface tensions were found to be considerably high, comparable to that of water, and they slightly decrease with higher CA concentration. The wetting behavior of supercooled DESs on glass is characterized by an unusually slow spreading process. The equilibrium contact angle increases with higher CA content. Moreover, wetting competition of a liquid bridge between dissimilar surfaces was also examined, and it is interesting to find the outcome dependent on the contact time, in addition to surface wettability.
關鍵字(中) ★ 深共熔溶劑
★ 過冷液體
★ 接觸角
★ 表面張力
★ 潤濕競爭
關鍵字(英) ★ Deep Eutectic Solvents
★ Supercooled liquid
★ Contact angle
★ Surface tension
★ Wetting competition
論文目次 摘要 ......................................................................................................................................................... v
Abstract .................................................................................................................................................. vi
誌謝 ....................................................................................................................................................... vii
Table of Contents ................................................................................................................................... ix
List of Figures ......................................................................................................................................... x
Chapter 1 Introduction ............................................................................................................................ 1
Chapter 2 Experiments ............................................................................................................................ 4
2-1 Materials ....................................................................................................................................... 4
2-2 Preparation of supercooled DESs ................................................................................................. 4
2-3 Differential scanning calorimetry (DSC) analysis ........................................................................ 4
2-4 Rheological analysis ..................................................................................................................... 4
2-5 Density measurement .................................................................................................................... 5
2-6 Surface tension measurement ....................................................................................................... 5
2-7 Wettability analysis ....................................................................................................................... 6
Chapter 3 Results and Discussions .......................................................................................................... 7
3-1 Supercooled state and viscosity .................................................................................................... 7
3-2 Surface tension of supercooled DES and slow relaxation .......................................................... 11
3-3 Wetting of supercooled DES on glass ........................................................................................ 15
3-4 Wetting competition of a drop of supercooled DESs between two dissimilar surfaces ............. 19
Chapter 4 Conclusion ............................................................................................................................ 21
References ............................................................................................................................................. 23
參考文獻 [1] El Achkar, T., H. Greige-Gerges, and S. Fourmentin, Basics and properties of deep eutectic solvents: a review. Environmental Chemistry Letters, 2021. 19(4): p. 3397-3408.
[2] Hansen, B.B., et al., Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev, 2021. 121(3): p. 1232-1285.
[3] Marcus, Y. and Y. Marcus, Applications of deep eutectic solvents. 2019: Springer.
[4] Smith, E.L., A.P. Abbott, and K.S. Ryder, Deep eutectic solvents (DESs) and their applications. Chem Rev, 2014. 114(21): p. 11060-82.
[5] Gull, M., et al., Prebiotic phosphate ester syntheses in a deep eutectic solvent. Journal of molecular evolution, 2014. 78: p. 109-117.
[6] Li, X. and K.H. Row, Development of deep eutectic solvents applied in extraction and separation. Journal of separation science, 2016. 39(18): p. 3505-3520.
[7] Tian, H., et al., Recovery of natural products from deep eutectic solvents by mimicking denaturation. ACS Sustainable Chemistry & Engineering, 2019. 7(11): p. 9976-9983.
[8] Wang, Q., et al., Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly (ethylene terephthalate)(PET). Green Chemistry, 2015. 17(4): p. 2473-2479.
[9] Yang, T.-X., et al., Improving whole-cell biocatalysis by addition of deep eutectic solvents and natural deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 2017. 5(7): p. 5713-5722.
[10] Abbott, A.P., et al., Novel solvent properties of choline chloride/urea mixtures. Chemical communications, 2003(1): p. 70-71.
[11] Morrison, H.G., C.C. Sun, and S. Neervannan, Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. International journal of pharmaceutics, 2009. 378(1-2): p. 136-139.
[12] Wang, S.-M., et al., New synthetic route of polyoxometalate-based hybrids in choline chloride/urea eutectic media. Inorganica Chimica Acta, 2010. 363(7): p. 1556-1560.
[13] Wowk, B., Thermodynamic aspects of vitrification. Cryobiology, 2010. 60(1): p. 11-22.
[14] Ediger, M. and P. Harrowell, Perspective: Supercooled liquids and glasses. The Journal of chemical physics, 2012. 137(8): p. 080901.
[15] Zondervan, R., et al., Soft glassy rheology of supercooled molecular liquids. Proceedings of the National Academy of Sciences, 2008. 105(13): p. 4993-4998.
[16] Blazhnov, I.V., N.P. Malomuzh, and S.V. Lishchuk, Temperature dependence of density, thermal expansion coefficient and shear viscosity of supercooled glycerol as a reflection of its structure. The Journal of chemical physics, 2004. 121(13): p. 6435-6441.
[17] Longinotti, M.P. and H.R. Corti, Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime. Journal of Physical and Chemical Reference Data, 2008. 37(3): p. 1503-1515.
[18] Trejo González, J.A., M.P. Longinotti, and H.R. Corti, The viscosity of glycerol− water mixtures including the supercooled region. Journal of Chemical & Engineering Data, 2011. 56(4): p. 1397-1406.
[19] Champion, D., et al., Translational diffusion in sucrose solutions in the vicinity of their glass transition temperature. The Journal of Physical Chemistry B, 1997. 101(50): p. 10674-10679.
[20] Dutkiewicz, J., et al., HRTEM and TEM studies of amorphous structures in ZrNiTiCu base alloys obtained by rapid solidification or ball milling. Micron, 2009. 40(1): p. 1-5.
[21] Inoue, A. and N. Nishiyama, Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys. Materials science and Engineering: A, 1997. 226: p. 401-405.
[22] Li, J.W., A.N. He, and B.L. Shen, Effect of Tb addition on the thermal stability, glass-forming ability and magnetic properties of Fe–B–Si–Nb bulk metallic glass. Journal of Alloys and Compounds, 2014. 586: p. S46-S49.
[23] Shen, B., et al., Enhancement of glass-forming ability of FeCoNiBSiNb bulk glassy alloys with superhigh strength and good soft-magnetic properties. Journal of Applied Physics, 2007. 102(2): p. 023515.
[24] Young, T., III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London, 1805(95): p. 65-87.
[25] Nunes, R.J., B. Saramago, and I.M. Marrucho, Surface Tension of dl-Menthol:Octanoic Acid Eutectic Mixtures. Journal of Chemical & Engineering Data, 2019. 64(11): p. 4915-4923.
[26] Chen, Y., et al., Surface Tension of 50 Deep Eutectic Solvents: Effect of Hydrogen-Bonding Donors, Hydrogen-Bonding Acceptors, Other Solvents, and Temperature. Industrial & Engineering Chemistry Research, 2019. 58(28): p. 12741-12750.
[27] García, G., et al., Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy & Fuels, 2015. 29(4): p. 2616-2644.
[28] Shahbaz, K., et al., Prediction of the surface tension of deep eutectic solvents. Fluid Phase Equilibria, 2012. 319: p. 48-54.
[29] Abbott, A.P., et al., Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. Journal of the American Chemical Society, 2004. 126(29): p. 9142-9147.
[30] Stapelbroek, B., et al., Universal spreading of water drops on complex surfaces. Soft matter, 2014. 10(15): p. 2641-2648.
[31] Hu, S.-W., et al., Peculiar Wetting of N,N-Dimethylformamide: Expansion, Contraction, and Self-Running. The Journal of Physical Chemistry C, 2019. 123(40): p. 24477-24486.
[32] Tanner, L., The spreading of silicone oil drops on horizontal surfaces. Journal of Physics D: Applied Physics, 1979. 12(9): p. 1473.
[33] Wei, H.-H., H.-K. Tsao, and K.-C. Chu, Slipping moving contact lines: critical roles of de Gennes’s ‘foot’ in dynamic wetting. Journal of Fluid Mechanics, 2019. 873: p. 110-150.
[34] Craveiro, R., et al., Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids, 2016. 215: p. 534-540.
[35] Nguyen, T.P., et al., Scanty-water oil-in-water emulsion glasses synthesized through a low-energy process: Nucleation and growth mechanism. Journal of the Taiwan Institute of Chemical Engineers, 2020. 109: p. 129-136.
[36] Nuthalapati, K., Y.-J. Sheng, and H.-K. Tsao, Anomalous interfacial dynamics of pendant droplets of N,N-dimethylformamide containing Silwet. Journal of the Taiwan Institute of Chemical Engineers, 2022. 133.
[37] Hu, S.W., et al., Directed self-propulsion of droplets on surfaces absent of gradients for cargo transport. J Colloid Interface Sci, 2021. 586: p. 469-478.
[38] Naser, J., F.S. Mjalli, and Z.S. Gano, Molar Heat Capacity of Selected Type III Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2016. 61(4): p. 1608-1615.
[39] Basaiahgari, A., S. Panda, and R.L. Gardas, Acoustic, volumetric, transport, optical and rheological properties of Benzyltripropylammonium based Deep Eutectic Solvents. Fluid Phase Equilibria, 2017. 448: p. 41-49.
[40] Elhamarnah, Y., et al., Thermo-rheological characterization of Malic Acid based Natural Deep Eutectic Solvents. Sci Total Environ, 2020. 708: p. 134848.
[41] Mjalli, F.S., T. Al-Wahaibi, and A.A. Al-Hashmi, Effect of nano-particles on the rheological properties of Reline. Journal of Molecular Liquids, 2015. 206: p. 256-261.
[42] Crowley, K.J. and G. Zografi, The use of thermal methods for predicting glass-former fragility. Thermochimica Acta, 2001. 380(2): p. 79-93.
[43] Mallamace, F., et al., Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc Natl Acad Sci U S A, 2010. 107(52): p. 22457-62.
[44] Weingartner, N.B., et al., A Phase Space Approach to Supercooled Liquids and a Universal Collapse of Their Viscosity. Frontiers in Materials, 2016. 3.
[45] Abbott, A.P., et al., Glycerol eutectics as sustainable solvent systems. Green Chem., 2011. 13(1): p. 82-90.
[46] Hayyan, A., et al., Glucose-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 2013. 178: p. 137-141.
[47] Shafie, M.H., R. Yusof, and C.-Y. Gan, Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties. Journal of Molecular Liquids, 2019. 288.
[48] Weng, Y.-H., et al., Spreading dynamics of a precursor film of nanodrops on total wetting surfaces. Physical Chemistry Chemical Physics, 2017. 19(40): p. 27786-27794.
[49] Hong, S.J., et al., Droplet compression and relaxation by a superhydrophobic surface: contact angle hysteresis. Langmuir, 2012. 28(13): p. 5606-13.
[50] Liang, Y.E., et al., Meniscus Shape and Wetting Competition of a Drop between a Cone and a Plane. Langmuir, 2016. 32(33): p. 8543-9.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2023-6-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明