博碩士論文 107223059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.191.33.207
姓名 賴啟嘉(Chi Jia Lai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具雙氟茚酮七併環戊二烯併二噻吩與雙環戊烷二噻吩之非富勒烯受體開發
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-20以後開放)
摘要(中) 本研究以實驗室先前利用CDT (cyclopentadithiophene)單元所開發之多併環材料: DCDTT (dicyclopentadithienothiophene)與多環材料: BCDT (bicyclopentadithiophene)作為核心,多環噻吩之核心有助於電荷轉移進而增加載子移動率,並於多環的核心架構中引入分支的碳鏈以增進分子溶解度,透過在結構末端接上具有雙氟原子的茚酮 (fluorinated indanone, INF)分子,製備出兩種結構相似的化合物: INF-DCDTT與INF-BCDT。相比於其他鹵素元素,具有雙氟原子的茚酮溶解度更佳,有助於提高分子的溶解度,使元件製備成膜能較為平整不堆疊,利於探討元件所得之光伏參數。
本研究開發之化合物,除了能作為非富勒烯受體(non-fullerene acceptors, NFAs)應用於有機太陽能電池(Organic Solar Cell, OPV)中,亦能作為鈣鈦礦電池(perovskite solar cells, PSCs)的添加劑使用,透過末端的羰基與修飾的二氰乙烯基去鈍化鈣鈦礦電池的表面缺陷,能有助於提高元件效能,本實驗室於2022年四月發表至JMCA的文獻研究中,利用INCl-DCDTT作為鈣鈦礦層之添加劑,能有效提高電池效能從原先17%至21.39%,因此本研究使用拉電性更強且溶解度更好的雙氟茚酮,期望能獲得更好的元件效能。這些材料皆完成NMR與質譜之結構鑒定,並利用UV-vis 及 DPV測量其光學及電化學性質(HOMO、LUMO與Eg),再藉由 DSC 及 TGA 測量其材料熱穩定性,這些新開發的有機光電材料正進行相關元件測試,期望有良好的效能表現。
摘要(英) DCDTT (Dicyclopentadithienothiophene) and BCDT (bicyclopentadithiophene) are two organic optoelectronic materials that are derived from the CDT (cyclopentadithiophene) unit. The core of the CDT helps with charge transfer and increases the carrier mobility. Introducing branched carbon chains into the core structure of the CDT enhances the molecular solubility. Both of two compounds were end-capped with the same electron withdrawing group, fluorinated dicyanomethylene indanone (INF). Via Knoevenagel condensation, two similar materials were obtained, INF-DCDTT and INF-BCDT. Additionally, compared to other halogen elements, indanones with difluorine atoms have better solubility, which is essential for producing high-quality film in solar cell devices. These two compounds also can serve as additive in perovskite solar cells (PSCs). Our group has published a related study on JMCA in April, 2022. The presence of carbonyl (C=O) and cyano (C≡N) groups have a good interaction with undercoordinated Pb2+ ions and passivate the trap states in the perovskite films. Introducing INCI-DCDTT as a donor passivator into Pb-based PSCs increases the power conversion efficiency from 17% to 21.39% compared with devices without the additive. It is expected that INF-DCDTT can achieve better device performance by using stronger electron-withdrawing and better solubility difluorine atoms. The chemical structures of these newly developed materials were characterized by NMR spectroscopy and mass spectrometry. Furthermore, their optical properties were investigated using UV-vis spectroscopy, their electrochemical properties were analyzed by DPV, and their thermal stabilities were determined by DSC and TGA. Optoelectronic devices made from these newly developed small molecules are currently being optimized.
關鍵字(中) ★ 雙氟茚酮 關鍵字(英)
論文目次 目 錄
摘 要 i
Abstract ii
謝 誌 iv
目 錄 v
List of Figures ix
List of Schemes xi
List of Tables xiii
第一章 緒論 1
1-1 太陽能電池之前言 2
1-2 太陽能電池之概論 3
1-2-1 矽晶太陽能電池 5
1-2-2 無機化合物半導體太陽能電池 5
1-2-3 有機太陽能電池 6
1-3 太陽能電池之基本元件與組成 7
1-4 太陽能電池之運作原理(光伏效應) 9
1-4-1 光子吸收(Light absorption) 10
1-4-2 激子分離與擴散(Exciton dissociation and diffusion) 10
1-4-3 電荷傳輸(Charge transfer) 11
1-4-4 電荷收集(Charge collection) 11
1-5 有機光伏打太陽能電池之元件 12
1-6 太陽光譜與太陽能電池的光伏參數 13
1-6-1 J-V曲線(J-V Curve) 16
1-6-2 短路電流密度(Short circuit current density, JSC) 17
1-6-3 開路電壓(Open circuit voltage, VOC) 17
1-6-4 外部量子效率(External Quantum Efficiency, EQE) 18
1-6-5 填充因子(Fill Factor, FF) 18
1-6-6 光電轉換效率(Power conversion efficiency, η, PCE) 19
1-7 N型有機光伏打太陽能電池材料沿革 19
1-7-1 N型富勒烯有機光伏打材料(Fullerene Acceptors) 20
1-7-2 N型非富勒烯有機光伏打材料(Non-Fullerene Acceptors) 21
1-7-3 具氟茚酮應用於N型非富勒烯有機光伏打材料 30
1-7-4 有機光伏打材料應用於鈣鈦礦太陽能電池 34
1-8 研究動機與目的 38
第二章 實驗部分 40
2-1 化合物名稱對照 41
2-2 實驗藥品 42
2-2-1實驗所用之化學藥品 42
2-2-2實驗所用之溶劑除水方式 43
2-3 實驗儀器 44
2-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR);Bruker AVANCE 300 / 500 MHz 44
2-3-2 高解析質譜儀(High Resolution Mass Spectrometer, HRMS);JMS-700 HRMS 45
2-3-3示差熱掃描卡計 (Differential Scanning Calorimeter, DSC);NETZSCH DSC 204 F1 45
2-3-4 紫外光/可見光/近紅外光吸收光譜 (Ultraviolet Visible Near-infare Spectrophotometer, UV/VIS/NIR Spectrophotometer);HITACHI UH-5700 型 45
2-3-5 熱重分析儀 (Thermal Gravimetric Analyer, TGA); Perkin Elmer TGA 55 46
2-3-6 電化學裝置 (Electrochemical Analyzer / Work- station);HCH Instrumentent Model 621C 46
2-4 合成步驟 47
2-4-1 5,6-difluoroisobenzofuran-1,3-dione (6)之合成 47
2-4-2 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (8)之合成 49
2-4-3 Dithieno[3,2-b:2′,3′-d]thiophene (10)一鍋化合成 51
2-4-4 2,6-Bis(tributylstannyl)dithieno[3,2-b:2′,3′-d] thiophene (11)之合成 52
2-4-5 Ethyl 2-bromothiophene-3-carboxylate (14)之合成 53
2-4-6 Diethyl 2,2′-(dithieno[3,2-b:2’,3’-d]thiophene-2,6-diyl)-bis-(thiophene-3-carboxylate) (15) 之合成 55
2-4-7 1-Bromo-4-((2-hexyldecyl)oxy)benzene (17)之合成 56
2-4-8 diCHO-DCDTT (20) 之合成 57
2-4-9 INF-DCDTT (1) 之合成 60
2-4-10 5,5′-bis(tributylstannyl)-2,2′-bithiophene之合成 61
2-4-11 diethyl [2,2′:5′,2′′:5′′,2′′′-quaterthiophene]-3,3′′′-dicarboxylate (24)之合成 63
2-4-12 1-bromo-4-((2-ethylhexyl)oxy)benzene (25) 之合成 64
2-4-13 BCDT-b8 (27) 之合成 65
2-4-14 diCHO-BCDT-b8 (28) 之合成 67
2-4-15 INF-BCDT-b8 (2) 之合成 68
第三章 結果與討論 70
3-1 具氟茚酮合成路徑與產率優化探討 71
3-2 有機光電材料之光學性質探討 78
3-3 有機光電材料之電化學性質探討 82
3-4 有機光電材料之熱穩定性質分析 85
第四章 結論 88
第五章 實驗改良可行之辦法 90
參考文獻 93
附錄 106
參考文獻 Miranda, B. H. S.; Corrêa, L. d. Q.; Soares, G. A.; Martins, J. L.; Lopes P. L.; Vilela, M. L.; Rodrigues, J. F.; Cunha, T. G.; Vilaça, R. d. Q.; Hermosa, S. C.; Wouk, L.; Bagnis, D. "Efficient fully roll-to-roll coated encapsulated organic solar module for indoor applications" Sol. Energy 2021, 220, 343−353.
E. Becquerel, "Mémoire sur les effets électriques produits sous l′influence des rayons solaires" C. R. Acad. Sci. 1839, 9, 561–567.
Chapin, D.; Fuller, C.; Pearson, G. "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power" J. Appl. Phys. 1954, 25, 676.
https://www.nrel.gov/pv/cell-efficiency.html
Green, M. A.; Dunlop, E. D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X. "Solar cell efficiency tables (Version 61) " Prog. Photovolt. Res. Appl. 2023, 3, 3−16.
Saga, T. "Advances in crystalline silicon solar cell technology for industrial mass production" NPG Asia Mater. 2010, 2, 96–102.
Ylikunnari, M.; Välimäki, M.; Väisänen, K.-L.; Kraft, T. M.; Sliz, R.; Corso, G.; Po, R.; Barbieri, R.; Carbonera, C.; Gorni, G.; Vilkman, M. "Flexible OPV modules for highly efficient indoor applications" Flex. Print. Electron. 2020, 5, 014008.
Oseni, S. O.; Mola, G. T. "Properties of functional layers in inverted thin film organic solar cells" Sol. Energy Mater. Sol. Cells 2017, 160, 241−256.
Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. "A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance" Adv. Mater. 2015, 27, 4655−4660.
Forrest, S. R. "The Limits to Organic Photovoltaic Cell Efficiency" MRS Bull. 2005, 30, 28–32.
Peumans, P.; Bulović, V.; Forrest, S. R. "Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes" Appl. Phys. Lett. 2000, 76, 3854−3857.
Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. J. "Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions" Science 1995, 270, 1789−1791.
Gueymard, C. A.; Myers, D.; Emery, K. "Proposed reference irradiance spectra for solar energy systems testing" Sol. Energy 2002, 73, 443−467.
Mazhari, B. "An improved solar cell circuit model for organic solar cells" Sol. Energ Mat. Sol. C. 2006, 90, 1021−1033.
Boudreault, P.-L. T.; Najari, A.; Leclerc, M. "High-Performance Solution-Processed Solar Cells and Ambipolar Behavior in Organic Field-Effect Transistors with Thienyl-BODIPY Scaffoldings" Chem. Mater. 2011, 23, 456−469.
Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L. Hummelen, J. C. "Origin of the Open Circuit Voltage of Plastic Solar Cells" Adv. Funct. Mater. 2001, 11, 374-380.
Li, Y.; Huang,W.; Zhao, D.; Wang, L.; Jiao, Z.; Huang, Q.; Wang, P.; Sun, M.; Yuan, G. "Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor" Molecules. 2022, 27, 1800.
Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. "C60—The Third Man" Nature 1985, 318, 162−163.
Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; Wudl, F. "Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene" Science. 1992, 258, 1474.
Hoppe, H.; Glatzel, T.; Niggemann, M.; Schwinger, W.; Schaeffler, F.; Hinsch, A.; Lux-Steiner, M.; Sariciftci, N. S. "Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells" Thin Solid Films 2006, 512, 587−592.
Shaheen, S.E.; Brabec, C.J.; Sariciftci, N.S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. "2.5% efficient organic plastic solar cells" Appl. Phys. Lett. 2001, 78, 841–843.
Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. "Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells" Nat. Commun. 2014, 5, 5293.
Schubert, M.; Dolfen, D.; Frisch, J.; Roland, S.; Steyrleuthner, R.; Stiller, B.; Chen, Z.; Scherf, U.; Koch, N.; Facchetti, A.; Neher, D. "Influence of Aggregation on the Performance of All-Polymer Solar Cells Containing Low-Bandgap Naphthalenediimide Copolymers" Adv. Energy Mater. 2012, 2, 369–380.
Sharenko, A.; Proctor, C. M.; van der Poll, T. S.; Henson, Z. B.; Nguyen, T. Q.; Bazan, G. C. Adv. Mater. 2013, 25, 4403−4406.
Singh, R.; Aluicio-Sarduy, E.; Kan, Z.; Ye, T.; MacKenzie, R. C. I.; Keivanidis, P. E. J. Mater. Chem. A 2014, 2, 14348−14353.
Cnops, K.; Rand, B. P.; Cheyns, D.; Verreet, B.; Empl, M. A.; Heremans, P. "8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer" Nat. Commun. 2014, 5, 3406.
Cnops, K.; Zango, G.; Genoe, J.; Heremans, P.; Martinez-Diaz, M. V.; Torres, T.; Cheyns, D. "Energy Level Tuning of Non-fullerene Acceptors in Organic Solar Cells" J. Am. Chem. Soc. 2015, 137, 8991−8997.
Zhang, G.; Zhao, J.; Chow, P.C.Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. "Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells" Chem. Rev. 2018, 118, 3447–3507.
Bürckstümmer, H.; Tulyakova, E. V.; Deppisch, M.; Lenze, M. R.; Kronenberg, N. M.; Gsanger, M.; Stolte, M.; Meerholz, K.; Würthner, F. "Efficient Solution-Processed Bulk Heterojunction Solar Cells by Antiparallel Supramolecular Arrangement of Dipolar Donor–Acceptor Dyes" Angew. Chem. Int. Ed. 2011, 50, 11628−11632.
Winzenberg, K. N.; Kemppinen, P.; Scholes, F. H.; Collis, G. E.; Shu, Y.; Singh, T. B.; Bilic, A.; Forsyth, C. M.; Watkins, S. E. "Indan-1,3-dione electron-acceptor small molecules for solution-processable solar cells: a structure–property correlation" Chem. Commun. 2013, 49, 6307−6309.
Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. "An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells" Adv. Mater. 2015, 27, 1170−1174.
Wang, W.; Yan, C.; Lau, T.-K.; Wang, J.; Liu, K.; Fan, Y.; Lu, X.; Zhan, X. "Fused Hexacyclic Nonfullerene Acceptor with Strong Near- Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency" Adv. Mater. 2017, 29, 1701308.
Park, S.H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. "Bulk heterojunction solar cells with internal quantum efficiency approaching 100%" Nat. Photonics 2009, 3, 297–302.
Chen, Z.; Cai, P.; Chen, J.; Liu, X.; Zhang, L.; Lan, L.; Peng, J.; Ma, Y.; Cao, Y. "Low Band-Gap Conjugated Polymers with Strong Interchain Aggregation and Very High Hole Mobility Towards Highly Effi cient Thick-Film Polymer Solar Cells" Adv. Mater. 2014, 26, 2586–2591.
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A. "Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core" Joule 2019, 3, 1140–1151.
Würfel, U.; Herterich, J.; List, M.; Faisst, J.; Bhuyian, M. F. M.; Schleiermacher, H. F.; Knupfer, K. T.; Zimmermann, B. "A 1 cm2 Organic Solar Cell with 15.2% Certified Efficiency: Detailed Characterization and Identification of Optimization Potential" Sol. RRL. 2021, 5, 2000802.
Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y "Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells" Nat. Energy 2021, 6, 605−613.
Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C. C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F. "Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology" Nat. Mater. 2022, 21, 656–663.
Zheng, Z.; Wang, J.-Q.; Bi, P.-Q.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.-Y.; Zhang, S.-Q.; Hou, J.-H. "Tandem Organic Solar Cell with 20.2% Efficiency" Joule 2022, 6, 171–184.
Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. "Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells" J. Am. Chem. Soc. 2017, 139, 7148−7151.
Dai, S.; Zhao, F.; Zhang, Q.; Lau, T.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W.; Zhan, X. "Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells" J. Am. Chem. Soc. 2017, 139, 1336−1343.
Wang, Q.; Chen, B.; Liu, Y.; Deng, Y.; Bai, Y.; Dong, Q.; Huang, J. "Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films" Energy Environ. Sci. 2017, 10, 516–522.
Choi, H.; Liu, X.; Kim, H. I.; Kim, D.; Park, T.; Song, S. "A Facile Surface Passivation Enables Thermally Stable and Efficient Planar Perovskite Solar Cells Using a Novel IDTT-Based Small Molecule Additive" Adv. Energy Mater. 2021, 11, 2003829.
Lei, Y.; Xu, Y.; Wang, M.; Zhu, G.; Jin, Z. "Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells" Small. 2021, 2005495.
Seo, J.-Y.; Matsui, T.; Luo, J.; Correa-Baena, J.-P.; Giordano, F.; Saliba, M.; Schenk, K.; Ummadisingu, A.; Domanski, K.; Hadadian, M.; Hagfeldt, A.; Zakeeruddin, S. M.; Steiner, U.; Grätzel, M.; Abate, A. "Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency" Adv. Energy Mater. 2016, 6, 1600767.
Zhao, W.; Yao, Z.; Yu, F.; Yang, D.; Liu, S. "Achieving an Efficient and Stable Morphology in Organic Solar Cells Via Fine-Tuning the Side Chains of Small-Molecule Acceptors" Adv. Sci. 2018, 5, 1700131.
Wang, J. T.-W.; Wang, Z.; Pathak, S.; Zhang, W.; deQuilettes, D. W.; Wisnivesky-Rocca-Rivarola, F.; Huang, J.; Nayak, P. K.; Patel, J. B.; Mohd Yusof, H. A.; Vaynzof, Y.; Zhu, R.; Ramirez, I.; Zhang, J.; Ducati, C.; Grovenor, C.; Johnston, M. B.; Ginger, D. S.; Nicholas, R. J.; Snaith, H. J. "Efficient perovskite solar cells by metal ion doping" Energy Environ. Sci. 2016, 9, 2892−2901.
Masi, S.; Rizzo, A.; Munir, R.; Listorti, A.; Giuri, A.; Esposito Corcione, C.; Treat, N. D.; Gigli, G.; Amassian, A.; Stingelin, N.; Colella, S. "Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskite-Based Solar Cells" Adv. Energy Mater. 2017, 7, 1602600.
Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J.; Kanjanaboos, P.; Sun, J.-P.; Lan, X.; Quan, L. N.; Kim, D. H.; Hill, I. G.; Maksymovych, P.; Sargent, E. H. "Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes" Nat. Commun. 2015, 6, 7081.
Qin, L.; Wu, L.; Kattel, B.; Li, C.; Zhang, Y.; Hou, Y.; Wu, J.; Chan, W.-L. "Using Bulk Heterojunctions and Selective Electron Trapping to Enhance the Responsivity of Perovskite– Graphene Photodetectors" Adv. Funct. Mater. 2017, 27, 1704173.
Qin, M. C.; Cao, J.; Zhang, T. K.; Mai, J. Q.; Lau, T. K.; Zhou, S.; Zhou, Y.; Wang, J. Y.; Hsu, Y. J.; Zhao, N.; Xu, J. B.; Zhan, X. W.; Lu, X. H. "Fused-Ring Electron Acceptor ITIC-Th: A Novel Stabilizer for Halide Perovskite Precursor Solution" Adv. Energy Mater. 2018, 8, 1703399.
Zhang, M.; Dai, S.; Chandrabose, S.; Chen, K.; Liu, K.; Qin, M.; Lu, X.; Hodgkiss, J. M.; Zhou, H.; Zhan, X. "High-Performance Fused Ring Electron Acceptor−Perovskite Hybrid" J. Am. Chem. Soc. 2018, 140, 14938−14944.
Song, C.; Li, X.; Wang, Y.; Fu, S.; Wan, L.; Liu, S.; Zhang, W.; Song, W.; Fang, J. "Sulfonyl-based non-fullerene electron acceptorassisted grain boundary passivation for efficient and stable perovskite solar cells" J. Mater. Chem. A 2019, 7, 19881−19888.
Gao, Y.; Wu, Y.; Liu, Y.; Lu, M.; Yang, L.; Wang, Y.; Yu, W. W.; Bai, X.; Zhang, Y.; Dai, Q. "Interface and grain boundary passivation for efficient and stable perovskite solar cells: the effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors" Nanoscale Horiz. 2020, 5, 1574−1585.
Afraj, S. N.; Velusamy, A.; Chen, C.-Y.; Ni, J.-S.; Ezhumalai, Y.; Pan, C.-H.; Chen, K.-Y.; Yau, S.-L.; Liu, C.-L.; Chiang, C.-H.; Wu, C.-G.; Chen, M.-C. "Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells" J. Mater. Chem. A 2022, 10, 11254−11267.
Kang, Y.-J.; Kwon, S.-N.; Cho, S.-P.; Seo, Y.-H.; Choi, M.-J.; Kim, S.-S.; Na, S.-I. "Antisolvent Additive Engineering Containing Dual-Function Additive for Triple-Cation p−i−n Perovskite Solar Cells with over 20% PCE" ACS Energy Lett. 2020, 5, 2535−2545.
Chen, T.-W.; Afraj, S. N.; Hong, S.-H.; Chou, L.-H.; Velusamy, A.; Chen, C.-Y.; Ezhumalai, Y.; Yang, S.-H.; Osaka, I.; Wang, X.-F.; Chen, M.-C.; Liu, C.-L. "Synergetic Effect on Enhanced Photovoltaic Performance of SprayCoated Perovskite Solar Cells Enabled by Additive Doping and Antisolvent Additive Spraying Treatment" ACS Appl. Energy Mater. 2022, 5, 4149–4158.
Lee, S.; Kim, M.; Yu, E. S.; Lee, Jun, Y. 2016, Samsung SDI Co., Ltd., Korea, Republic of , WO 2016/186269 Al.
Gao, W.; Kong, Z. 2021, China, CN112707807
Schroeder, Z. W.; LeDrew, J.; Selmani, V. M.; Maly, K. E. "Preparation of substituted triphenylenes via nickelmediated Yamamoto coupling" RSC Adv. 2021, 11, 39564-39569.
Yao, H.; Cui, Y.; Yu, R.; Gao, B.; Zhang, H.; Hou, J. "Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-Narrow Band Gap" Angew. Chem., Int. Ed. 2017, 56, 3045−3049.
Cui, Y.; Yang, C.; Yao, H.; Zhu, J.; Wang, Y.; Jia, G.; Gao, F.; Hou, J. "Efficient Semitransparent Organic Solar Cells with Tunable Color enabled by an Ultralow-Bandgap Nonfullerene Acceptor" Adv. Mater. 2017, 29, 1703080.
Jiang, Y.; Cabanetos, C.; Allain, M.; Jungsuttiwong, S.; Roncali, J. "Manipulation of the electronic and photovoltaic properties of
materials based on small push-pull molecules by substitution of the
arylamine donor block by aliphatic groups" Org. Electron. 2016, 37, 294–304.
Pemberton, N.; Åberg, V.; Almstedt, H.; Westermark, A. and Almqvist, F. "Microwave-Assisted Synthesis of Highly Substituted
Aminomethylated 2-Pyridones" J. Org. Chem. 2004, 69, 7830.
Arvela, R. K.; Lead-beater, N. E. "Rapid, Easy Cyanation of Aryl Bromides and Chlorides Using Nickel Salts in Conjunction with Microwave Promotion" J. Org. Chem. 2003, 68, 9122.
Sullivan, P.; Duraud, A.; Hancox, l.; Beaumont, N.; Mirri, G.; Tucker, J. H. R.; Hatton, R. A.; Shipman, M.; Jones, T. S. "Halogenated Boron Subphthalocyanines as Light Harvesting Electron Acceptors in Organic Photovoltaics" Adv. Energy Mater. 2011, 1, 352−355.
指導教授 陳銘洲(Ming Chou Chen) 審核日期 2023-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明