博碩士論文 110223077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.147.79.32
姓名 張仲翔(Zhong-Xiang Zhang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 可溶性苯並噻二唑衍生物之電洞傳輸層材料開發
(Development of Solution Processable Benzothiadiazole Based Hole Transport Materials)
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-28以後開放)
摘要(中) 本研究主要以benzothiadiazole (BT)單元衍生開發數種有機光電材料。首先BT兩端接上噻吩延長共軛,接著以進行Cadogan cyclization與否衍生出具三環或五環兩種核心,再於結構末端上修飾推電子基triphenylamine (TPA),製備出兩種小分子材料:DTPBT-2D (1)、DTBTN-2D (2);或與SBT單元進行共聚製備出與兩種高分子材料:DTPBT-SBT (3)、DTBTN-SBT (4)。
本研究所開發之材料主要作為電洞傳輸層材料,應用於鈣鈦礦太陽能電池。在三環核心結構中引入拉電子能力較強之硝基將提升分子內電荷傳輸能力;五環核心則為稠環結構,其較平面之特性使分子間之  - 堆疊更強。小分子系列之兩材料DTPBT-2D (1)、DTBTN-2D (2) 均為D-A-D結構,此種分子設計能使分子內、間之載子傳輸更為順暢;高分子系列之兩材料DTPBT-SBT (3)、DTBTN-SBT (4)中之共聚單體SBT具硫醚鏈與鄰近噻吩間之硫---硫作用力,將增強分子的共振與平面性。此外,分子結構中含有氮與硫原子,其孤對電子能鈍化鈣鈦礦層中未配位之鉛離子。以上種種優點使此兩系列分子均具成為高效能光電材料之潛力。目前DTPBT-2D (1)、DTBTN-2D (2) 兩材料應用在錫基鈣鈦礦電池中,初步得到的元件效率為6.2% 與5.6%。
這些新材料皆完成NMR與質譜之結構鑒定,利用UV-Vis及DPV測量其光學及電化學性質如HOMO、LUMO與Eg,再以DSC及TGA證實此材料的高熱穩定性。這些新開發的有機光電材料正進行相關元件測試,期望有良好的效能表現。
摘要(英) A series of new organic optoelectronic materials based on benzoselenadiazole (BT) were developed and characterized for the applications in perovskite solar cells (PSCs).
In this work, four newly developed HTMs (DTPBT-2D (1), DTBTN-2D (2), DTPBT-SBT (3), DTBTN-SBT (4)) were synthesized by conjugating DTPBT and DTBTN core to triphenylamine (TPA) or polymerizing with dithioalkylbithiophene (SBT). So far, the state-of-the-art hole-transporting materials (HTMs) with benzothiadiazole unit have been widely used in high effiency PSCs. Benefit from the strong electron withdrawing ability which derived from nitro groups, DTBTN core can afford good intramolecular charge transfer phenomenon. Intermolecular  - interaction is enhanced due to the fused ring structure of DTPBT core, and the good solubility is maintained by introducing branched alkyl chain to the planar core. For the development of polymeric HTMs, highly planar structures can be obtained due to the intramolecular S---S interactions between thioalkyl chain and sulfur atom on the adjacent thiophene. Furthermore, the presence of electron rich sulfur and nitro atoms exhibit a good interaction with undercoordinated Pb2 ions and passivate the trap states in the perovskite films. Based on the above advantages, these newly developed compounds are expected to perform well in PSCs.
Currently, DTPBT-2D (1) and DTBTN-2D (2) have been applied in tin-based perovskite solar cell, and the devices exihibited power conversion efficiency of 6.2% and 5.6%, respectively.
The chemical structures of these newly developed materials were characterized by NMR spectroscopy and mass spectrometry. Further, the optical properties of these compounds were investigated by UV-Vis spectroscopy, electrochemical analyses were analyzed by DPV, and the thermal stabilities were determined by DSC and TGA. Optoelectronic devices made from these newly developed small molecules are under optimization.
關鍵字(中) ★ 錫基鈣鈦礦太陽能電池
★ 電洞傳輸層材料
★ 苯並噻二唑
關鍵字(英) ★ perovskite solar cells
★ holetransport materials
★ benzothiadiazole
論文目次 摘 要 vi
Abstract viii
謝 誌 i
目 錄 ii
List of Figures vi
List of Schemes viii
List of Tables ix
附錄資料 x
第一章 緒論 1
1-1 太陽能電池之前言 2
1-2 太陽能電池之概論 3
1-2-1 矽基太陽能電池 4
1-2-2 無機化合物半導體太陽能電池 5
1-2-3 有機太陽能電池 6
1-3 太陽能電池之基本元件與組成 7
1-4 太陽能電池之運作原理(光伏效應) 9
1-4-1 光子吸收(Photon absorption) 9
1-4-2 激子分離與擴散(Exciton dissociation and diffusion) 10
1-4-3 電荷傳輸(Charge-carrier transportation) 10
1-4-4 電荷收集(Charge-carrier collection) 11
1-5 太陽能電池之元件參數介紹 12
1-5-1 J-V 曲線 (JV Curve) 13
1-5-2 短路電流密度 (Short circuit current density, JSC) 14
1-5-3 開路電壓 (Open circuit voltage, VOC) 14
1-5-4 外部量子效率 (External quantum efficiency, EQE) 14
1-5-5 填充因子 (Fill factor, FF) 15
1-5-6 光電轉換效率(Power conversion efficiency, η, PCE) 15
1-6 鈣鈦礦太陽能電池簡介 16
1-6-1 鈣鈦礦太陽能電池的組成 18
1-6-2 工作原理 21
1-6-3電洞傳輸材料 22
1-6-4 添加劑材料 27
1-7 研究動機與目的 29
第二章 實驗部分 33
2-1 化合物名稱對照 34
2-2 實驗藥品 35
2-2-1 實驗所用之化學藥品 35
2-2-2 實驗所用之溶劑除水方式 36
2-3 實驗儀器 37
2-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR);Bruker AVANCE 300 / 500 MHz 37
2-3-2 高解析質譜儀(High Resolution Mass Spectrometer, HRMS);JMS-700 HRMS 38
2-3-3 示差熱掃描卡計 (Differential Scanning Calorimeter, DSC);NETZSCH DSC 204 F1 38
2-3-4 紫外光 / 可見光吸收光譜 (Ultraviolet / Visible Spectro -Photometer);HITACHI U-3900 型 39
2-3-5 熱重分析儀 (Thermal Gravimetric Analyer, TGA);TGA 55 39
2-3-6 電化學裝置 (Electrochemical Analyzer / Work- station);HCH Instrumentent Model 621C 39
2-4 合成步驟 40
2-4-1 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]thiadiazole(7)之合成 40
2-4-2 tributyl(thiophen-2-yl)stannane(8)之合成 41
2-4-3 4-methoxy-N-(4-methoxyphenyl)-N-(4-(tributylstannyl) phenyl)aniline(10)之合成 42
2-4-3 3,3′-Dibromo-2,2′-bithiophene(11)之合成 44
2-4-3 (3,3′-bis(tetradecylthio)-[2,2′-bithiophene]-5,5′-diyl)bis(trimethylstannane)(15)之合成 44
2-4-4 5,6-dinitro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiaz-ole(16)之合成 47
2-4-5 2,8-dibromo-10,11-bis(2-ethylhexyl)-10,11-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[3,2-b]indole(19)之合成 48
2-4-6 4,7-bis(5-bromothiophen-2-yl)-5,6-dinitrobenz-o[c][1,2,5]thiadiazole(20)之合成 50
2-4-5. 2,8-dibromo-10,11-bis(2-ethylhexyl)-10,11-dihydro-[1,2,5]thiadiaz-olo[3,4-e]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[3,2-b]indole(1)之合成 51
2-4-6. 4,4′-((5,6-dinitrobenzo[c][1,2,5]thiadiazole-4,7-diyl)bis-(thiophene-5,2-diyl))bis(N,N-bis(4-methoxyphenyl)aniline)(2) 之合成 52
2-4-7. DTPBT-SBT (3)之合成 54
2-4-8. DTBTN-SBT (4)之合成 55
第三章 結果與討論 56
3-1 有機光電材料之光學性質探討 57
3-2 有機光電材料之電化學性質探討 60
3-3 有機光電材料之熱穩定性質分析 63
第四章 結論 65
參考文獻 67
附錄 73
參考文獻 1. https://www.nrel.gov/pv/cell-efficiency.html (2023)
2. Advances in crystalline silicon solar cell technology for industrial mass production – npg asia materials https://www.nature.com/articles/am201082
3. Renewable and Environmentally Sustainable Energy Sources. The Role of Chemistry and New Technological Developments Athanasios Valavanidis
4. https://www.solarquotes.com.au/panels/photovoltaic/dye-sensitised-cells/
5. Solution-processed organic solar modules with 10% power conversion efficiency -Yi-Ming Chang
6. Record Conversion for Perovskite Solar Cells - https://www.printedelectronicsworld.com/articles/21247/record-conversion-for-perovskite-solar-cells
7. Oseni, S. O.; Mola, G. T. Sol. Energ Mat. Sol. C. 2017, 160, 241−256.
8. https://www.ossila.com/pages/organic-photovoltaics-introduction
9. Arkhipov, V. I.; Heremans, P.; Bässler, H. Appl. Phys. Lett. 2003, 82, 4605.
10. Mazhari, B. Sol. Energ Mat. Sol. C. 2006, 90, 1021-1033.
11. Boudreault, P.-L. T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456-469.
12. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374-380.
13. Li, Y.; Huang,W.; Zhao, D.; Wang, L.; Jiao, Z.; Huang, Q.;Wang, P.; Sun, M.; Yuan, G. Molecules. 2022, 27, 1800.
14. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 60506051.
15. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker R.; Yum, J. H.; Moser, J. E.; Gra¨tzel, M.; Park, N. G. Sci. Rep. 2012, 2, 1–7.
16. Tian, X.; Stranks, S. D.; You, F. Sci. Adv. 2020, 6(31), eabb0055.
17. https//www.pv-magazine.com/2021/04/06/unist-epfl-claim-25-6-efficiency-world-record-for-perovskite-solar-cell/
18. Yu, B. B.; Chen, Z.; Zhu, Y.; Wang, Y.; Han, B.; Chen, G.; Zhang, X.; Du, Z.; He, Z. Adv. Mater. 2021, 2102055.
19. Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Han, L. Nature Energy, 2016, 1, 1–7.
20. Chen, Y, C.; Huang, S, K.; Li, S, S.; Tsai, Y, Y.; Chen, C, P.; Chen, C, W.; Chang, Y, J.; ChemSusChem, 2018, 11, 3225–3233.
21. Deng, Z.; He, M.; Zhang, Y.; Ullah, F.; Ding, K.; Liang, J.; Zhang, Z.; Xu, H.; Qiu, Y.; Xie, Z.; Shan, T.; Chen, Z.; Zhong, H.; Chen, C. Chem. Mater., 2021, 33, 285.
22. Cho, I.; Jeon, N.; Kwon, O.; Kim, D.; Jung, E.; Noh, J.; Seo, J.; Seok, S.; Park, S. Chem. Sci., 2017, 8, 734.
23. Wang, Y, K.; Ma, H.; Chen, Q.; Sun, Q.; Liu, Z.; Sun, Z.; Jia, X.; Zhu, Y.; Zhang, S.; Zhang, J.; Yuan, N.; Ding, J.; Zhou, Y.; Song, Bo.; Li, Y.; ACS Appl. Mater. Interfaces. 2021, 13, 7705–7713.
24. Zhang, F.; Yao, Z.; Guo, Y.; Li, Y.; Bergstrand, J.; Brett, C. J.; Cai, B.; Hajian, A.; Guo, Yang, Y. X.; Gardner, J. M.; Widengren, J.; Roth, S. V.; Kloo, L.; Sun. L. J. Am. Chem. Soc. 2019, 141, 19700.
25. Sun, X.; Li, Z.; Yu, X.; Wu, X.; Zhong, C.; Liu, D.; Lei, D.; Jen, A. K. Y.; Li, Z.; Zhu, Z. Angew. Chem. Int. Ed. 2021, 60, 7227–7233.
26. Xia, J.; Joseph, V.; Sutanto, A. A.; Balasaravanan, R.; Ezhumalai, Y.; Zhang, Z. X.; Ni, J. S.; Yogesh, S. T.; Yau, S. L.; Shao, G.; Qiu, Z.; Asiri, A. M.; Chen, M. C.;Nazeeruddin, M. K. Cell Reports Physical Science 2023, 4, 101312.
27. Ke, W.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe, C. M. M.; Marks, T. J.; Chen, M.; Kanatzidis, M. G.; J. Am. Chem. Soc. 2018, 140, 388.
28. Vegiraju, S.; Ke, W.; Priyanka, P.; Ni, J. S.; Wu, Y. C.; Spanopoulos, I.; Yau, S. L.; Marks, T. J.; Chen, M. C. Kanatzidis, M. G. Adv. Funct. Mater. 2019, 1905393
29. Kuan, C. H.; Balasaravanan, R.; Hsu, S. M.; Ni, J. S.; Tsai, Y. T.; Zhang, Z. X. Chen, M. C.; Diau, W. G. Adv. Mater. 2023, 2300681.
30. Qin, M.; Cao, J.; Zhang, T.; Mai, J.; Lau, T.; Zhou, S.; Zhou, Y.; Wang, J.; Hsu, Y.; Zhao, N.; Xu, J.; Zhan, X. Lu, X. Adv. Energy Mater. 2018, 1703399.
31. Y. Gao, Y. Wu, Y. Liu, M. Lu, L. Yang, Y. Wang, W. W. Yu, X. Bai, Y. Zhang and Q. Dai, Nanoscale Horiz., 2020, 5, 1574–1585.
32. Hai, J,; Wu, H.; Yin, X.; Song, J.; Hu, L.; Jin, Y.; Li, L.; Su, Z.; Xu, Z,; Wang, H.; Li, Z. Adv. Funct. Mater. 2021, 31, 2105458.
33. Wang, Y. D.; Wang, Y.; Shao, J. Y.; Lan, Y.; Lan, Z. R.; Zhong, Y. W.; Song, Y. ACS Energy Lett. 2021, 6, 2030−2037.
34. Li, Y. T.; Chen, T. C.; Lu, H.; Li, H.; Yang, X.; Cheng, M. Dyes and Pigments 2021, 184, 108786.
35. Vegiraju, S.; Chang, B. C.; Priyanka, P.; Huang, D. Y.; Wu, K. Y.; Li, L. H.; Chang, W. C.; Lai, Y. Y.; Hong, S. H.; Yu, B. C.; Wang, C. L.; Chang, W. J.; Liu, C.-L.; Chen, M. C.; Facchetti, A. Adv. Mater. 2017, 29, 1702414.
36. Afraj, S. N.; Lin, C. C.; Velusamy, A.; Cho, C. H.; Liu, H.Y.; Chen, J.; Lee G. H.; Fu, J. C.; Ni, J. S.; Tung, S. H.; Yau, S.; Liu, C. L.; Chen, M. C.; Facchetti, A. Adv. Funct. Mater. 2022, 32, 2200880.
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2023-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明