博碩士論文 110223015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.145.63.136
姓名 劉家豪(Jia-Hao Liu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具噻吩吡嗪環戊二烯二噻吩衍生物之非富勒烯受體開發
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本論文主要以有機光伏打電池(Organic photovoltaic cells, OPVs)的非富勒烯受體(Non-fullerene acceptor, NFA)材料作為主軸。在NFA材料分子設計使用環戊烷二噻吩(Cyclopentadithiophene, CDT)作為核心,接上噻吩吡嗪(Thiophene-pyridine, TP)作為π-spacer,接著在末端接上不同的拉電子基團茚酮(Indanone, IN)、二氟茚酮(Difluorodicyanomethylene indanone, INF)、二氯茚酮(Dichlorodicyanomethylene indanone, INCl)和二溴茚酮(Dibromodicyanomethylene indanone, INBr),製備出四個新型NFA材料: IN-TP-CDT-b8 (1)、INF-TP-CDT-b8 (2)、INCl-TP-CDT-b8 (3)及INBr-TP-CDT-b8 (4)。這些新型NFA材料已完成NMR及質譜結構鑑定,並透過 DPV 及 UV-Vis測量電化學及光學性質(HOMO / LUMO 與 Eg),接著由TGA及DSC檢測顯示此系列的分子具有良好的熱穩定性。這四種NFA材料將應用於OPV和作為添加劑應用於鈣鈦礦太陽能電池(Perovskite solar cells, PSC),目前正進行相關元件測試,期望它們能展現優異的光電轉換效率。
摘要(英) This thesis focuses on the utilization of non-fullerene acceptor (NFA) materials in organic photovoltaic cells (OPVs). The molecular design of these NFAs incorporates a cyclopentadithiophene (CDT) core, a thiophene-pyridine (TP) π-spacer, and various electron-withdrawing end groups, including indanone (IN), difluorodicyanomethylene indanone (INF), dichlorodicyanomethylene indanone (INCl), and dibromodicyanomethylene indanone (INBr). Four novel NFA materials, namely IN-TP-CDT-b8 (1), INF-TP-CDT-b8 (2), INCl-TP-CDT-b8 (3), and INBr-TP-CDT-b8 (4), have been successfully synthesized. The structures of these NFA materials have been characterized using NMR and mass spectrometry. Their electrochemical and optical properties, such as HOMO/LUMO levels and bandgaps (Eg), have been evaluated through DPV and UV-Vis spectroscopy. Moreover, thermal analysis (TGA) and differential scanning calorimetry (DSC) have demonstrated the excellent thermal stability of this molecular series. These four NFA materials will be implemented in OPVs and also utilized as additives for perovskite solar cells (PSC). Comprehensive device testing is currently underway to assess the anticipated superior photovoltaic conversion efficiency offered by these newly developed NFA materials.
關鍵字(中) ★ 非富勒烯受體材料
★ 環戊烷二噻吩
★ 噻吩吡嗪
關鍵字(英) ★ Non-fullerene acceptor
論文目次 摘 要 V
ABSTRACT VI
謝 誌 VII
目錄 VIII
LIST OF FIGURES XIII
LIST OF SCHEMES XV
LIST OF TABLES XVII
第一章 緒論 1
1-1 前言 2
1-2 太陽能電池的發展 2
1-2-1 矽晶太陽能電池 4
1-2-2 無機化合物半導體太陽能電池 4
1-2-3 混和式薄膜太陽能電池 5
1-3 有機光伏打電池之元件結構 6
1-3-1 雙層式異質接面(Bilayr heterojunction) 7
1-3-2 總體異質接面(Bulk heterojunction, BHJ) 7
1-3-3 串聯結構 8
1-4 有機光伏打電池之運作原理 8
1-4-1 光激發(Photoexcitaion and exciton formation) 9
1-4-2 激子擴散(Exciton diffusion) 9
1-4-3 激子分離(Exciton dissociation) 10
1-4-4 電荷收集(Charge transport and collection) 10
1-5 有機光伏打電池參數介紹 10
1-5-1 J-V 曲線 11
1-5-2 短路電流(Short circuit current, JSC) 12
1-5-3 開路電壓(Open circuit voltage, VOC) 13
1-5-4 外部量子效率(Eternal quantum efficiency, EQE) 13
1-5-5 填充因子(Fill factor, FF) 13
1-5-6 能量轉換效率(Power conversion efficiency, PCE, η) 14
1-6 有機光伏打電池材料 14
1-6-1 P-type有機光伏打材料 15
1-6-2 N-type有機光伏打材料 16
1-6-3 富勒烯受體 16
1-6-4 有機非富勒烯受體 17
1-6-5 稠環電子受體 17
1-6-6 非稠環電子受體 21
1-7 研究動機與目的 24
第二章 實驗部份 27
2-1 化合物名稱對照表 28
2-2 實驗藥品 30
2-2-1 實驗所用之化學藥品 30
2-2-2 實驗所用之溶劑除水方式 33
2-3 實驗儀器 33
2-3-1 核磁共振圖譜儀(Nuclear Magnetic Resonance, NMR) : Bruker AVANCE 300 / 500 MHz 33
2-3-2 高解析質譜儀(High Resolution Mass Spectrometer, HRMS) : ATS-00670, Bruker, New ultrafleXtremeTM, Bremen, D.E. 34
2-3-3 紫外光 / 可見光吸收圖譜(Ultraviolet / Visible Spectro -Photometer) : HITACHI U-3900、U-4100型 35
2-3-4 示差熱掃描卡計(Differential Scanning Calorimeter, DSC) : METTLER TOLEDO DSC 1 / DSC 822e 35
2-3-5 電化學裝置(Electrochemical Analyzer / Work- station) : HCH Instrumentent Model 621C 36
2-3-6 熱重分析儀(Thermal Gravimetric Analyer, TGA):TGA 55 36
2-4 合成步驟 37
2-4-1 3-bromo-2,2′-bithiophene (6)之合成 37
2-4-2 bis(4-((2-ethylhexyl)oxy)phenyl)methanone) (7)之合成 39
2-4-3 [2,2′-Bithiophen]-3-ylbis(4-((2ethylhexyl)oxy)-phenyl)methanol (8)之合成 40
2-4-4 (4,4-bis(4-((2-hexyldecyl)oxy)phenyl)-4H-cyclop-enta[2,1-b:3,4-b′]dithiophene-2,6-diyl)bis (trimethylstannane) (10)之合成 41
2-4-5 2,5-dibromo-3,4-dinitrothiophene (12)之合成 43
2-4-6 1,2-bis(4-((2-ethylhexyl)oxy)phenyl)ethane-1,2-di-one (14)之合成 44
2-4-7 1,2-bis(4-((2-ethylhexyl)oxy)phenyl)ethane-1,2-di-one (16)之合成 45
2-4-8 2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]-pyrazine (17)之合成 47
2-4-9 7-bromo-2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thie-no[3,4-b]pyrazine-5-carbaldehyde (19)之合成 48
2-4-10 7,7′-(4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4H-cy-clopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl)bis(2,3-bis-(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazine-5-carbaldehyde) (20)之合成 50
2-4-11 2-4-1 5,6-difluoroisobenzofuran-1,3-dione (23)之合成 51
2-4-12 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-yli-dene)malononitrile (25)之合成 53
2-4-13 IN-TP-CDT-b8 (1)之合成 54
2-4-14 INF-TP-CDT-b8 (2)之合成 56
2-4-15 INCl-TP-CDT-b8 (3)之合成 58
2-4-16 INBr-TP-CDT-b8 (4)之合成 60
第三章 結果與討論 62
3-1 TP分子產率優化探討 63
3-2 TP-CDT系列DFT 理論計算 (DENSITY FUNCTIONAL THEORY) 66
3-2 有機光電材料之光學性質探討 67
3-3 有機光電材料之電化學性質探討 69
3-4 有機光電材料之熱穩定性分析 72
第四章 結論 75
參考文獻 77
附 錄 83
參考文獻 1.Miranda, B. H.S.; Corrêa, L. d. Q.; Soares, G. A.; Martins, J. L.; Lopes P. L.; Vilela, M. L.; Rodrigues, J. F.; Cunha, T. G.; Vilaça, R. d. Q.; Hermosa, S. C.; Wouk, L.; Bagnis, D. Sol. Energy. 2021, 220, 343−353.
2.Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G. Chem. Rev. 2015, 115, 2136–2173.
3.https://www.nrel.gov/pv/cell-efficiency.html. (2022)
4.Green, M. A.; Dunlop, E. D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X. Prog. Photovolt. Res. Appl. 2023, 3,3−16.
5.(a) NPG Asia Materials, 2010, 2, 96.;
(b) https://product.statnano.com/product/11739/amorphous-silicon-solar-cells
6.https://www.solarfeeds.com/mag/wiki/copper-indium-gallium-selenide/
7.(a) https://www.pv-magazine.com/2020/12/11/semi-transparent-dye-sensitized-solar-module-with-8-7-efficiency/;
(b) https://www.pv-magazine.com/2020/03/24/an-organic-solar-cell-with-25-efficiency/;
(c) https://911electronic.com/de/perovskite-cells-efficient-and-cheaper/
8.Peumans, P.; Bulović, V.; Forrest, S. R. Appl. Phys. Lett. 2000, 76, 3854−3857.
9.Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. J. Science. 1995, 270, 1789−1791.
10.McEvoy, A.; Markvart, T.; Castañer, L. Practical Handbook of Photovoltaics(Second Edition), 2013.
11.Sini, G.; Schubert, M.; Risko, C.; Roland, S.; Lee, O. P.; Chen, Z.; Richter, T. V.; Dolfen, D.; Coropceanu, V.; Ludwigs, S.; Scherf, U.; Facchetti, A.; Fréchet, J. M. J.; Neher, D. Adv. Energy Mater. 2018, 8, 1702232.
12.Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev., 2009, 109, 11, 5868.
13.Clarke, T. M.; Durrant, J. R. Chem. Rev. 2010, 110, 6736– 6767.
14.Gelinas, S.; Rao, A.; Kumar, A.; Smith, S. L.; Chin, A. W.; Clark, J.; van der Poll, T. S.; Bazan, G. C. Science. 2014, 343, 512– 516
15.Mazhari, B. Sol. Energy Mat. Sol. C., 2006, 90, 1021.
16.Boudreault, P. L. T.; Najari, A.; Leclerc, M. Chem. Mater., 2011, 23, 456.
17.Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater., 2001, 11, 374.
18.Li, Y.; Sheriff, H. K. M., Jr.; Liu, X.; Wang, C. K.; Ding, K.; Han, H.; Wong, K. T.; Forrest, S. R. J. Am. Chem.Soc. 2019, 141 (45),
18204– 18210,
19.Sakai, J.; Taima, T.; Yamanari, T.; Saito, K. Sol. Energy Mater. Sol. C., 2009, 93, 1149.
20.Schulze, K.; Riede, M.; Brier, E.; Reinold, E.; Bäuerle, P.; Leo, K. J. Appl. Phys., 2008, 104, 074511.
21.Schulze , K.; Uhrich, C.; Schüppel, R.; Leo, K.; Pfeiffer, M.; Brier, E.; Reinold E.;Bäuerle, P. Adv. Mater. 2006, 18, 2872 —2875.
22.Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; van Hal, P. A.; Janssen, R. A. J. Angew. Chem. 2003, 42, 3371– 3375.
23.Srivastava, S. B.; Srivastava,S. K.; Singh, S. P. J. Phys. Chem. C. 2017, 121, 17104– 17111.
24.Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Nat. Commun. 2014, 5, 5293.
25.Fraga, I.; Distler, A.; Lüer, L. Adv. Energy Mater. 2017, 7, 1601320.
26.Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.-L.; Cao, Y.; Chen, Y. Science. 2018, 361, 1094– 1098.
27.Stoltzfus, D. M.; Donaghey, J. E.; Armin, A.; Shaw, P. E.; Burn, P. L.; Meredith, P. Chem. Rev. 2016, 116, 12920– 12955.
28.Zhan, X.; Tan, Z. a.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246– 7247.
29.Zhang, G.; Zhao, J.; Chow, P. C.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Chem. Rev. 2018, 118, 3447.
30.Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208– 2267.
31.Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, H.; Zhu, D.; Zhan, X. Adv.Mater. 2015, 27, 1170.
32.Wu, J. S.; Cheng, S. W.;Cheng, Y. J.;Hsu, J. S. Chem. Soc. Rev. 2015, 44, 1113 —1154.
33.Park, S.H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nat. Photonics 2009, 3, 297–302.
34.Chang, M. J.; Wang, Y. C.; Yi, Y. Q. Q.; Ke, X.; Wan, X. J.; Li, C. X.; Chen, Y. S. J. Mater. Chem. A. 2018, 6, 8586– 8594.
35.Zhan, X.; Facchetti, A.;Barlow, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268.
36.Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7148– 7151.
37.Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A. Joule. 2019, 3, 1140–1151.
38.Zheng, Z.; Wang, J.-Q.; Bi, P.-Q.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.-Y.; Zhang, S.-Q.; Hou, J.-H. Joule 2022, 6, 171–184.
39.Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J.; Kanjanaboos, P.; Sun, J.-P.; Lan, X.; Quan, L. N.; Kim, D. H.; Hill, I. G.; Maksymovych, P.; Sargent, E. H. Nat. Commun. 2015, 6, 7081.
40.Wang, P.; Klein, C.; Humphry, R.; Zakeeruddin S. M.; Grätzel , M. J. Am. Chem. Soc. 2005, 127 , 808 —809.
41.Li, S. X.; Zhan, L. L.; Sun, C. K.; Zhu, H. M.; Zhou, G. Q.; Yang, W. T.; Shi, M. M.; Li, C. Z.; Hou, J. H.; Li, Y. F.; Chen, H. Z. J. Am. Chem. Soc. 2019, 141, 7, 3073.
42.He, C.; Li, Y.; Li, S.; Yu, Z.-P.; Li, Y.; Lu, X.; Shi, M.; Li, C.-Z.; Chen, H. ACS Appl. Mater.Interfaces. 2020, 12, 16700– 16706.
43.Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J. Chem.Rev. 2017, 117, 10291– 10318.
44.Afraj, S, N.; Chen, C.; Velusamy, A.; Liu, J, H.; Yau, S.; Chen, M, C. J. Phys. Chem. C. 2022, 126, 30, 12906–12915.
45.Chen, H.; Hu, Z.; Wang, H.; Liu, L.; Chao, P.; Qu, J.; Chen, W.; Liu, A.; He, F. Joule. 2018, 2, 1623– 1634.
46.Zhang, H.; Yao, H.; Hou, J.; Zhu, J.; Zhang, J.; Li, W.; Yu, R.; Gao, B.; Zhang, S.; Hou, J. Adv. Mater. 2018, 30, 1800613.
47.Lee, J.; Ko, S. J.; Lee, H.; Huang, J.; Zhu, Z.; Seifrid, M.; Vollbrecht, J.; Brus, V. V.; Karki, A.; Wang, H.; Cho, K.; Nguyen, T. Q.; Bazan, G. C. ACS EnergyLett. 2019, 4, 1401–1409.
指導教授 陳銘洲 審核日期 2023-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明