博碩士論文 110223008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.15.25.32
姓名 潘皓偉(Hao-Wei Pan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 應用於鋰電池固態電解質之 2-丙烯醯胺基 共聚物之製備及研究
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本論文提供一快速、低成本、高離子含量、具自修復效果、高 電導率,以常見有機溶劑即可溶解之鋰電池固態電解質之新型合成 策略。本篇使用 2-丙烯醯胺基-2-甲基丙磺酸 (2-acrylamido-2- methylpropane sulfonic acid, AMPS) 作為陽離子單體,行諾里什Ⅰ型光 化 學 反 應 (Norrish type I reaction) 合成兩種系列共聚物 (PAMPLEO1AA、PAMPLEO3AA)。藉由調控陽離子單體 AMPS 及單體共聚物莫耳比,可開發出高分子 PAMPLEO3AA (目前 PAMPLEO3AA 已開發出 AMPS 莫耳百分比為 50%、離子含量 74% 之比例),後續添加重量百分比 55 wt% 之聚偏二氟乙烯 ( polyvinylidene difluoride, PVDF ),及 18 wt% 之鋰鹽 LiTFSI 製備 固態電解質 AMPBL632,應用於 NCM811 電池進行各項參數研究。 此外物性測試部分 PAMPLEO1 以 80 °C 加熱後於 6 小時顯現出自修復效果。並且由量測結果後得知 PAMPLEO3AA 帶有一定防火性, 且具十足之熱穩定性。藉由量測後得知 AMPBL632 其鋰離子遷移數 tLi+ 量測可達 0.42,並且於 25 mA/g 電流密度下進行循環充放電測試 展現出 35.45% 之庫倫效率。其電化學窗口可達 4.99V vs Li/Li+,且 其電導率可達驚人的 5.18 × 10−4 Scm-1 高數值,其有望應用於高壓鋰 ii 電池並具優異之效能。後續機械應力及 SEM 皆驗證對於固態電解質 而言,PAMPLEO3AA 的加入可有效提升其機械應力及產生鈍化層 的作用,應可有效保護電極不受氧化還原影響導致崩解。部分結果 已可說明 PAMPLEO3AA 之材料具備非常優越之性能,且對應用於 鋰電池之聚合物單離子固態電解質提供一種新思路,乃非常具有未 來展望性之新型電解質。
摘要(英) This study provides a new strategy for the cost-effective synthesis of PAMPL based polymers which show highly ionic, self-healing, and high electrical conductivity properties. Gratifyingly, the synthesized polymers are well soluble in common organic solvents. The synthesis of PAMPL polymers (PAMPLEO1AA and PAMPLEO3AA) were achieved by the Norrish type I reaction of anionic monomer viz 2-acrylamido-2- methylpropane sulfonic acid (AMPS) and copolymonomer. Physical property test for self-healing of PAMPLEO1 revealed that PAMPLEO1 confirm self-healing at 80oC in 6h. In addition, the PAMPLEO3AA was also confirm fire-resistence property and thermal stability. Moreover, the synthesis of the solid polymer electrolyte AMPBL632 was achieved by the addition of 55 wt% of polyvinylidene (PVDF) and 18 wt% LiTFSI to PAMLEO3AA (50% AMPS, 74% ionic monomer) polymers. AMPBL632 produced the highest lithium transference number (tLi+) up to 0.42. Further, the AMPBL632 achieved 35.45% coulombic efficiency after 5 cycles at 25mA/g current density. Delightfully, the high electrochemical window up to 4.99V of AMPBL632 could be the potential for high voltage lithium battery. In addition, the ion conductivity test of AMPBL632 generated the conductivity up to 5.18 × 10−4 Scm-1. The mechanical stress and scanning electron microscope proved the addition of PAMPLEO3AA the electrolyte to PVDF would promote the higher mechanical stress, and it also produced passive layer which was efficiently protecting the electrode during the redox reaction. The above-mentioned properties confirmed that PAMPLEO3AA would be a superior performance in Li-batteries over AMP electrolyte Li-batteries. Thus, PAMPLEO3AA will be absolutely a future prospect single-ion solid polymer electrolyte.
關鍵字(中) ★ 鋰電池
★ 固態電解質
★ 高電導率
★ 2-丙烯醯胺基-2-甲基丙磺酸
★ 聚偏二氟乙烯
★ 高電化學窗口
★ 諾里什Ⅰ型光化學反應
★ 自修復
★ 防火性
★ 鋰離子遷移數
關鍵字(英) ★ lithium battery
★ solid polymer electrolyte
★ high ion conductivity
★ 2-acrylamido-2- methylpropane sulfonic acid
★ polyvinylidene difluoride
★ high electrochemical window
★ Norrish type I reaction
★ self healing
★ fire resistance
★ lithium transference number
論文目次 目錄
摘要................................................. i
Abstract............................................. iii
謝誌..................................................v
目錄................................................. vi
表目錄............................................... xi
圖目錄............................................... xii
Scheme .............................................. xvi
Equation............................................ xviii
附錄目錄............................................. xix
重要名詞縮寫對照表 ....................................xx
第一章 緒論............................................1
1-1 前言—鋰離子電池(Lithium-ion battery, LIB).........1
1-2 鋰離子電池運作原理..................................4
1-3 鋰離子電池之風險....................................5
1-4 鋰離子電池電解質....................................7
1-4-1 石榴石型電解質 ...................................8
1-4-2 LISICON 電解質...................................9
1-4-3 硫化物電解質 ....................................10
1-4-4 聚合物電解質 ....................................11
1-4-5 固態電解質之總結 .................................13
1-5 聚合物類電解質文獻回顧..............................14
第二章 研究動機與目的 ..................................30
2-1 研究動機...........................................30
2-2 單離子傳導單體選擇..................................32
第三章 實驗與儀器 ......................................43
3-1 實驗藥品...........................................43
3-1-1 實驗所使用之化學藥品..............................43
3-1-2 實驗所使用之溶劑..................................44
3-2 實驗儀器及技術原理..................................45
3-2-0 Brightek UV 面光源機.............................45
3-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance);Bruker
AVANCE 300 / 500MHz...................................46
3-2-2 熱重分析儀 (Thermal Gravimetric Analysis, TGA);
Waters TA Materials /TGA 55 ..........................46
3-2-3 示差熱掃描卡計(Differential Scanning Calorimeter, DSC);NETZSCH DSC 204 F1..............................47
3-2-4 恆電位儀 (Potentiostat);Biologic SP-150.........48
3-2-5 充放電儀(Charge And Discharge Instrument);NEWARE
......................................................49
3-2-6 化學穩定性 (Chemical stability)..................50
3-3 合成步驟...........................................50
3-3-1 PAMPL 的合成.....................................51
3-3-2 PAMPLEO1 no CL 的合成 ...........................52
3-3-3 PAMPLEO3 no CL 的合成 ...........................53
3-3-4 PAMPLEO1 的合成..................................54
3-3-5 PAMPLEO3 的合成..................................56
3-3-6 PAMPLEO1AA 的合成 ...............................58
3-3-7 PAMPLEO3AA 的合成 ...............................60
3-3-8 PAMPLAA 的合成 ..................................61
3-4 高分子合成後處理....................................63
3-4-1 高分子薄膜的製備..................................63
3-4-2 電池元件製作......................................64
第四章 結果與討論 ......................................66
4-1 PAMPL 系列之合成及討論 .............................66
4-2 PAMPLEO no CL 系列之合成及討論......................69
4-3 PAMPLEO 系列之合成及討論............................73
4-4 PAMPLAA 系列之合成及討論 ...........................77
4-5 PAMPLEOAA 系列之合成及討論..........................79
4-5-1 熱穩定性 (Thermal Stability).....................81
4-5-2 防火性測試 (Fire-resistance Test)................83
4-5-3 鋰離子遷移數測試 (Lithium Transference Number Test) ......................................................85
4-5-4 電導率及充放電測試 (Ion Conductivity And CHA. /DIS.
Test) ................................................88
4-5-5 機械應力測試及掃描電子顯微鏡 (Mechanical Stress And
Scanning Electron Microscope, SEM) ...................91
4-6 PAMPSEOAA 系列之合成及討論..........................93
第五章 結論............................................95
補充資料...............................................97
其他電池...............................................97
阻垢劑.................................................98
參考文獻...............................................99
附錄..................................................104
參考文獻 1 Larcher, D.; Tarascon, J.-M. Nat. Chem. 2015, 7, 19−29.
2 Zhang, L.; Yang, Z.; Hu, F.; Feng, X.; Li, D.; Chen, Y. ACS Appl. Mater. Interfaces 2020, 12, 17415– 17423.
3 Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Energy Environ. Sci. 2009, 2, 638– 654.
4 Meng, Y. S. Chem. Rev. 2020, 120, 6327.
5 https://www.precedenceresearch.com/lithium-ion-battery-market
6 Lewis, G. N.; Keyes, F. G. J. Am. Chem. Soc. 1913, 35, 340−344.
7 Whittingham, M. S. Science 1976, 192, 1126−1127.
8 Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. 100 Res. Bull. 1980, 15, 783– 789.
9 A. Yoshino et al. (1986) United States Patent US4668595A.
10 Miao, Y.; Hynan, P.; von Jouanne, A.; Yokochi, A. Energies 2019, 12, 1074.
11 The Nobel Prize in Chemistry 2019. NobelPrize.org. Nobel Prize Outreach AB 2023. Thu. 11 May 2023.
12 Parimalam, B. S.; MacIntosh, A. D.; Kadam, R.; Lucht, B. L. J. Phys. Chem. C 2017, 121, 22733– 22738.
13 Lu, D.; Shao, Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; Polzin, B.; Zhang, J.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. A.; Bhattacharya, P.; Liu, J.; Xiao, J. Adv. Energy Mater. 2015, 5, 1400993.
14 Lin, D.; Liu, Y.; Cui, Y. Nature Nanotech 2017, 12, 194–206.
15 Balaish, M.; Gonzalez-Rosillo, J. C.; Kim, K. J.; Zhu, Y.; Hood, D. Z.; Rupp J. L. M. Nat Energy 2021, 6, 227–239.
16 Zhao, N.; Khokhar, W.; Bi, Z.; Shi, C.; Guo, X.; Fan, L.-Z.; Nan, C.-W. Joule 2019, 3, 1190– 1199.
17 Wang, C.; Fu, K.; Kammapata, S.; McOwen, D.; Samson, A.; Zhang, L.; Hitz, G.; Nolan, A.; Wachsman, E.; Mo, Y.; Thangadurai, V.; Hu, L. Chem. Rev. 2020, 120, 4257−4300.
18 Manthiram, A.; Yu, X.; Wang, S. Nat. Rev. Mater. 2017, 2, 16103.
19 Schuett, J.; Kuhnb, A. S.; Neitzel, G. S. J. Mater. Chem. A 2023, 11, 9160.
20 Rangasamy; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.; Liang, C. J. Am. Chem. Soc. 2015, 137, 1384– 1387.
21 Oh, J. A. S.; He, L.; Plewa, A.; Morita, M.; Zhao, Y.; Sakamoto, T.; Song, X.; Zhai, W.; Zeng, K.; Lu, L. ACS Appl. Mater. Interfaces 2019, 11, 40125– 40133.101
22 Wenzel, S.; Weber, D. A.; Leichtweiss, T.; Busche, M. R.; Sann, J.; Janek, J. Solid State Ionics 2016, 286, 24– 33.
23 Hayashi, A.; Masuzawa, N.; Yubuchi, S.; Tsuji, F.; Hotehama, C.; Sakuda, A.; Tatsumisago, M. Nat. Commun. 2019, 10, 5266.
24 Lee, Y.; Jeong, J.; Lee, H. J.; Kim, M.; Han, D.; Kim, H.; Yuk, J. M.; Nam, K.-W.; Chung, K. Y.; Jung, H.-G.; Yu, S. ACS Energy Lett. 2022, 7, 171−179.
25 Long, L.; Wang, S.; Xiao, M.; Meng, Y. J. Mater. Chem. A 2016, 4, 10038– 10069.
26 Liu, M.; Zhou, D.; He, Y. B.; Fu, Y. Z.; Qin, X. Y.; Miao, C.; Du, H. D.; Li, B. H.; Yang, Q. H.; Lin, Z. Q. Nano Energy 2016, 22, 278– 289.
27 Chaurasia, S. K.; Kataria, S.; Gupta, A. K.; Verma, Y. L.; Singh, V. K.; Tripathi, A. K.; Saroj, A. L.; Singh, R. K. RSC Adv. 2015, 5, 8263– 8277.
28 Long, L.; Wang, S.; Xiao, M.; Meng, Y. J. Mater. Chem. A, 2016, 4, 10038.
29 Arya, A.; Sharma, A. J. Mater. Sci. 2020, 55, 6242−6304.
30 Gadjourova, Z.; Andreev, Y. G.; Tunstall, D. P.; Bruce, P. G. Nature 2001, 412, 520– 523.
31 Young, W. S.; Kuan W. F.; Epps, T. H. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1–16.
32 Wei, W.; Xu, Z.; Xu, L.; Zhang, X.; Xiong, H.; Yang, J. ACS Appl Energy Mater 2018, 1, 6769–6773.
33 Ji, J. Y.; Li, B.; Zhong, W. H. Macromolecules 2012, 45, 602– 606.
34 Yuan, B.; Luo, G. M.; Liang, J.; Cheng, F. Y.; Zhang, W. Q.; Chen, J. J. Energy Chem. 2019, 38, 55– 59.
35 Bao, J.; Shi, G.; Tao, C.; Wang, C.; Zhu, C.; Cheng, L.; Qian, G.; Chen, C. J. Power Sources 2018, 389, 84– 92.102
36 J., Rolland; E., Poggi; A., Vlad; J.-F., Gohy Polymer, 2015, 68, 344-352.
37 Yuan, H.; Luan, J.; Yang, Z.; Zhang, J.; Wu, Y.; Lu, Z.; Liu, H. ACS Appl Mater Interfaces, 2020, 12, 7249-7256.
38 Wang, G.; Zhu, X.; Rashid, A.; Hu, Z.; Sun, P.; Zhang, Q.; Zhang, L. Journal of Materials Chemistry A 2020, 8, 13351-13363.
39 Tseng, Y. C.; Hsiang, S. H.; Tsao, C. H.; Teng, Hsisheng; Hou, S. S.; Jan, J. S. Journal of Materials Chemistry A 2021, 9, 5796-5806.
40 Wang, C.; Li, R.; Chen, P.; Fu, Y.; Ma, X.; Shen, T.; Zhou, B.; Chen, K.; Fu, J.; Bao, X. J. Mater. Chem. A 2021, 9, 4758– 4769.
41 Cai, X.; Ye, B.; Ding, J.; Chi, Z.; Sun, L.; Saha, P.; Wang, G. J. Mater. Chem. A 2021, 9, 2459– 2469.
42 Li, W.-Y.; Luo, Z.-H.; Long, X.; Long, J.-Y.; Pang, C.; Li, H.; Zhi, X.; Shi, B.; Shao, J.-J.; He, Y.-B. ACS Appl. Mater. Interfaces 2021, 13, 51107– 51116.
43 Caradant, L.; Lepage, D.; Nicolle, P.; Prébé, A.; Aymé-Perrot, D.; Dollé, M. ACS Applied Polymer Materials 2020, 2, 4943– 4951.
44 Liu, K.; Jiang, S.; Dzwiniel, T. L.; Kim, H. K.; Yu, Z.; Dietz Rago, N. L.; Kim, J. J.; Fister, T. T.; Yang, J.; Liu, Q.; Gilbert, J.; Cheng, L.; Srinivasan, V.; Zhang, Z.; Liao, C. ACS Appl. Mater. Interfaces 2020, 12, 29162– 29172.
45 He, Y.; Wang, J.; Zhang, Y.; Huo, S.; Zeng, D.; Lu, Y.; Liu, Z.; Wang, D.; Cheng, H. J. Mater. Chem. A 2020, 8, 2518– 2528.
46 Mackanic, D.; Michaels, W.; Lee, M.; Feng, D.; Lopez, J.; Qin, J.; Cui, Y.; Bao, Z. Adv. Energy Mater. 2018, 8, 1800703.
47 Gulzar, U.; Goriparti, S.; Miele, E.; Li, T.; Maidecchi, G.; Toma, A.; De Angelis, F.; Capiglia, C.; Zaccaria, R. P. J. Mater. Chem. A 2016, 4, 103, 16771– 16800.
48 Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, 2324– 2328.
49 C.W. Walker Jr. / Journal of Power Sources. 2002, 110, 144–151.
50 Y. Shen et al. / Electrochimica Acta. 2007, 52, 6956–6961.
51 Z. Jiang et al. Journal of Power Sources 2008, 180, 143–153.
52 Feng Yan, Songmin Shang, Macromolecules 2010, 43, 6398– 6405.
53 Mandal, S.; Kumari, S.; Kumar, M.; Ojha, U. Adv. Funct. Mater. 2021, 31, 2100251.
54 Sun, N.; Lu, F.; Yu, Y.; Su, L.; Gao, X.; Zheng, L. ACS Appl. Mater. Interfaces 2020, 12, 11778− 11788.
55 Chen, L.; Xue, P.; Liang, Q.; Liu, X.; Tang, J.; Li, J.; Liu, J.; Tang, M.; Wang, Z. ACS Appl. Energy Mater. 2022, 5, 3800– 3809.
56 Guan, S.; Wen, K.; Liang, Y.; Xue, C.; Liu, S.; Yu, J.; Zhang, Z.; Wu, X.; Yuan, H.; Lin, Z.; Yu, H. Li, L.; Nan, C. W. J. Mater. Chem. A 2022, 10, 24269-24279.
57 Fu, Y.; Manthiram, A. Chem. Mater. 2012, 24, 3081– 3087.
58 Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Progress in Natural Science: Materials International 2018, 28, 653-666.
59 Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, 2324– 2328.
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2023-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明