博碩士論文 110223085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.223.237.221
姓名 彭梓瑜(PENG,ZIH-YU)  查詢紙本館藏   畢業系所 化學學系
論文名稱 雙噻吩醯亞胺衍生物之 電洞傳輸層材料開發
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本論文以雙噻吩醯亞胺 (Bithiophene-imide, BTI) 為核心,開發出六種電洞傳輸層材料(Hole transport martials, HTMs)應用於鈣鈦礦太陽能電池中,並依照不同元件製成方式分為兩個系列。
本研究第一系列開發出兩種自組裝單分子膜(Self-assembled monolayer, SAM),以不同碳鏈長之雙噻吩醯亞胺(Bithiophene-imide, BTI)為核心,於一端接上推電子基團三苯胺(Triphenylamine, TPA),另一端則接上錨定基團丙二腈乙烯基(malononitrile),成功合成出 BTI-8-MN (1) 及 BTI-16-MN (2) 兩種材料,以自組裝的方式製成元件應用於錫鈣鈦礦太陽能電池。目前已將 BTI-8-MN (1) 和 BTI-16-MN (2) 進行元件測試,初步測試結果顯示 BTI-8-MN (1) 已可達到 6% 的光電轉換效率。
本研究第二部份亦開發一系列之電洞傳輸層材料,以旋轉塗布(spin coating)的方式製成元件,應用於鈣鈦礦太陽能電池中。同樣以BTI為核心,外接具亞苯基咪唑基團(Triarylamine-functionalized Imidazolyl-capped group)作為推電子基團,並將分子內之咪唑基團接上正六烷的碳鏈,增加溶解度以提升成膜性,成功合成出不對稱之電洞傳輸層材料BTI-Im-3D (3)、BTI-Im6-3D (4)以及對稱的 BTI-Im-4D (5)、BTI-Im6-4D (6)四種材料。
為了更好的了解材料的電化學和光學性能,已藉 DPV 和 UV-Vis進行測定(如 HOMO / LUMO和 Eg),並通過TGA和DSC進行熱穩定性檢測。目前正在優化這些新開發的小分子光電材料元件,期望能進一步提高其效能。
摘要(英) This study focuses on the development of six hole transport materials (HTMs) based on bithiophene-imide (BTI) for application in perovskite solar cells. The HTMs are categorized into two series based on the different fabrication methods.
In the first series, two self-assembled monolayers (SAMs) were developed by using BTI as the core. BTI core was functionalized with a triphenylamine (TPA) electron-donating group on one end and a malononitrile anchoring group on the other end. Two materials were successfully synthesized, namely BTI-8-MN (1) and BTI-16-MN (2), distinguished with different carbon chain lengths. These SAM-based HTMs were utilized in tin-based perovskite solar cells. Initial testing of BTI-8-MN (1) and BTI-16-MN (2) showed promising results, with BTI-8-MN (1) achieving a power conversion efficiency of around 6%.
The second part of this study also involves the development of a series of hole-transporting layer materials for application in perovskite solar cells using spin coating. Based on BTI as the core, these materials are externally attached with triarylamine groups and internally modified with imidazole groups capped with a hexyl carbon chain to enhance solubility and improve film-forming properties. Four types of materials were successfully synthesized, the asymmetric hole-transporting layer materials BTI-Im-3D (3) and BTI-Im6-3D (4), as well as the symmetric materials BTI-Im-4D (5) and BTI-Im6-4D (6).
To better understand the electrochemical and optical properties of these new materials (such as HOMO/LUMO and Eg), DPV and UV-Vis measurements were carried out, and thermal stability was tested by TGA and DSC. Further, these newly developed small-molecule optoelectronic material devices will be optimized to enhance performance.
關鍵字(中) ★ 雙噻吩醯亞胺
★ 電洞傳輸層材料
關鍵字(英)
論文目次 摘 要 V
Abstract VII
謝 誌 IX
目錄 XI
List of Figures XVI
List of Schemes XVIII
List of Tables XXI
附錄 XXII
第1章 緒論 1
1-1 前言 2
1-2 有機太陽能電池之概論 3
1-2-1 矽晶太陽能電池 5
1-2-2 無機化合物半導體太陽能電池 6
1-2-3 有機太陽能電池 6
1-3 太陽能電池參數介紹 8
1-3-1 J-V 曲線 10
1-3-2 短路電流(Short circuit current, JSC) 10
1-3-3 開路電壓(Open circuit voltage, VOC) 11
1-3-4 外部量子效率(Eternal quantum efficiency, EQE) 11
1-3-5 填充因子(Fill factor, FF) 12
1-3-6 能量轉換效率(Power conversion efficiency, η, PCE) 12
1-4 鈣鈦礦太陽能電池簡介 13
1-4-1 元件基本架構 15
1-4-2 工作原理 17
1-4-3 電洞傳輸層 18
1-5 研究動機與目的 32
1-5-1電洞傳輸層材料 (SAM) 33
1-5-2電洞傳輸層材料 36
第2章 實驗部份 40
2-1 化合物名稱對照 41
2-2 實驗藥品 43
2-3 實驗儀器 45
2-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR);Bruker AVANCE 300 / 500 MHz 45
2-3-2 高解析質譜儀 (High Resolution Mass Spectrometer, HRMS);Bruker, New ultrafleXtremeTM ; autoflex ; HRMS 46
2-3-3 紫外光 / 可見光吸收光譜 (Ultraviolet Visible Near-infare Spectrophotometer, UV/VIS/NIR Spectrophotometer); UH5700 型 47
2-3-4 示差熱掃描卡計 (Differential Scanning Calorimeter, DSC);METTLER TOLEDO DSC 1 / METTLER TOLEDO DSC822e 47
2-3-5 熱重分析儀 (Thermal Gravimetric Analyer, TGA); Perkin Elmer TGA 55 48
2-3-6 電化學裝置 (Electrochemical Analyzer / Work- station);HCH Instrumentent Model 621C 48
2-4 合成步驟 49
3,3′-dibromo-2,2′-bithiophene (7) 之合成 49
[2,2‘-bithiophene]-3,3’-dicarboxylic acid (8) 之合 50
dithieno[3,2-c:2′,3′-e]oxepine-4,6-dione (9) 之合成 51
5-(2-ethylhexyl)-4H-dithieno[3,2-c:2′,3′-e]azepine-4,6(5H)-dione (11, BTI-b8) (11) 之合成 51
5-(2-hexyldecyl)-4H-dithieno[3,2-c:2′,3′-e]azepine-4,6(5H)-dione (17, BTI-b16) 之合成 54
2,8-dibromo-5-(2-ethylhexyl)-4H-dithieno[3,2-c:2‘,3’-e]azepine-4,6(5H)-dione (18, diBr-BTI-b16) 之合成 56
2-hexyldecan-1-amine (15) 之合成 57
2-(5-bromothiophen-2-yl)-1,3-dioxolane (19) 之合成 59
5-(1,3-dioxolan-2-yl)thiophen-2-yl)tributylstannane (20) 之合成 60
4-Bromo-N,N-bis(4-methoxyphenyl)aniline (21, TPA) 之合成 61
4-methoxy-N-(4-methoxyphenyl)-N-(4-(tributylstannyl) phenyl)aniline (22, TPA-SnBu3) 之合成 62
2-(4-(bis(4-methoxyphenyl)amino)phenyl)-8-bromo-5-(2-ethylhexyl)-4H-dithieno[3,2-c:2′,3′-e]azepine-4,6(5H)-dione (23,Br-BTI(b8)-TPA) 之合成 63
5-(8-(4-(bis(4-methoxyphenyl)amino)phenyl)-5-(2-ethylhexyl)-4,6-dioxo-5,6-dihydro-4H-dithieno[3,2-c:2′,3′-e]azepin-2-yl)thiophene-2-carbaldehyde (25,CHO-T-BTI(b8)-TPA) 之合成 65
5-(8-(4-(bis(4-methoxyphenyl)amino)phenyl)-5-(2-hexyldecyl)-4,6-dioxo-5,6-dihydro-4H-dithieno[3,2-c:2′,3′-e]azepin-2-yl)thiophene-2-carbaldehyde (26,CHO-T-BTI(b16)-TPA) 之合成 66
BTI-8-MN (1) 之合成 68
BTI-16-MN (2) 之合成 69
1,2-bis(4‘-(bis(4-methoxyphenyl)amino)-[1,1’-biphenyl]-4-yl)ethane-1,2-dione (27, diketonediTPA) 之合成 71
5,5′-(5-(2-ethylhexyl)-4,6-dioxo-5,6-dihydro-4H-dithieno[3,2-c:2′,3′-e]azepine-2,8-diyl)bis(thiophene-2-carbaldehyde) (28, diCHO-T-BTI(b8) 之合成 72
BTI-Im-3D (3) 之合成 73
BTI-Im6-3D (4) 之合成 75
BTI-Im-4D (5) 之合成 76
BTI-Im6-4D (6) 之合成 78
第3章 結果與討論 80
3-1有機光電材料之密度泛函理論計算 81
3-1-1電洞傳輸層材料 (SAM) 81
3-1-2電洞傳輸層材料 83
3-2 有機光電材料之光學性質探討 87
3-2-1 電洞傳輸層材料 (SAM) 87
3-1-2 電洞傳輸層材料 89
3-3 有機光電材料之電化學性質探討 91
3-3-1電洞傳輸層材料 (SAM) 91
3-3-2電洞傳輸層材料 93
3-4 有機光電材料之熱穩定性分析 97
3-4-1電洞傳輸層材料 (SAM) 98
3-4-2電洞傳輸層材料 101
第4章 結論 105
附錄 114
參考文獻 145
參考文獻 Green, M. A.; Emery, K.; King, D. L.; Hishikawa, Y.; Warta, W. Prog. Photovoltaics. 2006, 14, 5, 455.
Becquerel, E. C. R. Acad. Sci. 1839, 9, 561–567.
Chapin, D. M.; Fuller, C. S.; Pearson, G. L. Journal of Applied Physics 1954, 25 (5), 676-677.
https://www.nrel.gov/pv/cell-efficiency.html
https://www.nrel.gov/pv/cell-efficiency.htmL
Green, M. A.; Dunlop, E. D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X. Prog. Photovolt. Res. Appl. 2023, 3, 3−16.
Saga, T. NPG Asia Mater. 2010, 2, 96–102.
https://www.solarfeeds.com/mag/wiki/copper-indium-gallium-selenide/
(a) https://technews.tw/2019/03/11/identify-high-performing-solar-materials/
(b)https://www.ctci.org.tw/media/1920/%E6%9C%89%E6%A9%9F-opv-%E5%A4%AA%E9%99%BD%E5%85%89%E9%9B%BB%E6%8A%80%E8%A1%93-1-%E6%9B%B9%E6%AD%A3%E7%86%99.pdf
(C) https://www.re.org.tw/news/more.aspx?cid=200&id=1515
Mazhari, B. Sol. Energ Mat. Sol. C. 2006, 90, 1021-1033.
Boudreault, P. L. T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456-469.
Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374-380.
http://www.twiche.org.tw/ezfiles/0/1000/attach/14/pta_1684_5944131_93516.pd
Chen, Y.; Zhang, L.; Zhang, Y.; Gao, H.; Yan, H. RSC Adv. 2018, 8, 10489-10508.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050-6051.
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Sci. Rep. 2012, 2, 1-7.
Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G.; Shin, T. J.; Il Seok, S. Nature 2021, 598 (7881), 444-450.
Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. J. Photonics Energy, 2016, 6, 022001.
Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Nat. Commun. 2013, 4, 2761.
Hawash, Z.; Ono L. K.; Qi, Y. Adv. Mater. Interfaces, 2016, 3 , 1600117.
Wang, S.; Huang, Z.; Wang, X.; Li, Y.; Günther, M.; Valenzuela, S.; Parikh, P.; Cabreros, A.; Xiong, W.; Meng, Y. S. J. Am. Chem. Soc. 2018, 140, 16720– 16730.
Deng, Z.; He, M.; Zhang, Y.; Ullah, F.; Ding, K.;Liang, J.; Zhang, Z.;Xu, H.; Qiu, Y.; Xie, Z.; Shan, T.; Chen, Z.; Zhong, H.; Chen, C. C. Chem. Mater., 2021, 33, 285.
Wang, Y. K.; Ma, H.; Chen, Q. Y.; Sun, Q.; Liu, Z. X.; Sun, Z.; Jia, X. G.; Zhu, Y. Y.; Zhang, S. A.; Zhang, J.; Yuan, N. Y.; Ding, J. N.; Zhou, Y.; Song, B.; Li, Y. F. ACS Appl. Mater. Interfaces 2021, 13, 7705−7713
Bauer, M.; Zhu, H.; Baumeler, T.; Liu, Y.; Eickemeyer F.; Lorenz, C.; Mena-Osteritz, E.; Hertel, D.; Olthof, S.; Zakeeruddin, S.; Meerholz, K.; Gratzel,M.; Bauerle, P. Adv. Energy Mater. 2021, 11, 2003953
Ji, X.; Feng, K.; Ma, S.; Wang, J.; Liao, Q.; Wang, Z.; Li, B.; Huang, J.; Sun, H.; Wang, K.; Gu X. ACS Nano 2022, 16, 11902−11911.
Shariatinia, Z.; Sarmalek, S. I. Scientific Reports. 2022, 12, 13954.
Yu, B. B.; Chen, Z. H.; Zhu, Y. D.; Wang,Y. Y.; Han, B.; Chen, G. C.; Zhang, X. S.; Zheng, D.; He, Z. B. Adv. Mater. 2021, 33, 2102055
Kamarudin, M. A.; Hirotani, D.; Wang, Z.; Hamada, K.; Nishimura, K.; Shen, Q.; Toyoda, T.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S. J. Phys. Chem. Lett. 2019, 10, 5277– 5283.
Kuan, C. H.; Rajendiran, B.; Hsu, S. M.; Ni, J. S.; Tsai, Y. T.; Zhang, Z. X.;Chen, M. C.; Diau, E. W. G. Adv. Mater. 2023, 2300681.
Ke, W.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe, C. M. M.; Marks, T. J.; Chen, M.; Kanatzidis, M. G.; J. Am. Chem. Soc. 2018, 140, 388.
Vegiraju, S.; Ke, W.; Priyanka, P.; Ni, J. S.; Wu, Y. C.; Spanopoulos, I.; Yau, S. L. Marks, T. J.; Chen, M. C.; Kanatzidis, M. G. Adv. Funct. Mater. 2019, 190539
Ali, F.; Roldán-Carmona, C.;Sohail, M.; Nazeeruddin, M. K. Adv. Energy Mater. 2020, 10, 2002989.
Chang, C. Y.; Huang, H. H.; Tsai, H.; Lin, S. L.; Liu, P. H.; Chen, W.; Hsu, F. C.; Nie, W.; Chen, Y. F.; Wang, L. Adv. Sci., 2021, 8 , 2002718.
Z. Gu, L.; Zuo, T. T.; Larsen-Olsen, T.; Ye, G; Wu, F. C.; Krebs, H.; Chen, H. Z. J. Mater. Chem. A, 2015, 3, 24254.
Yalcin, E.; Can, M.; Rodriguez-Seco, C.; Aktas, E.; Pudi, R.; Cambarau, W.; Demic, S.; Palomares, E. Energy Environ. Sci., 2019, 12 , 230 —237.
Jiang, W. L.; Li, F. Z.; Li, M. L.; Qi, F.; Lin,F. R.; Jen K. Y. Alex. Angew. Chem. Int. Ed. 2022, 61, e202213560.
Kim, G. W.; Choi, H.; Kim, M.; Lee, J.; Son, S. Y.; Park, T. Advanced Energy Materials, 2020, 10(8), 1903403.
Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 9679– 9694
Afraj, S. N.; Kuan, C. H.; Lin, J. S.; Ni, J. S.; Velusamy, A.; Chen, M. C., & Diau, E. W. G. Adv. Funct. Mater. 2023, 33, 2213939.
Dyaga B.; Sasikumara, M.; Narendra R, C.; Jayathirtha R, V.; Someshwar P. Solar Energy. 2018, 174, 130–138.
Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.; Yao, X.; Feng, X.; Zhang, X. J. Am. Chem. Soc. 2020, 142, 16632– 16643.
Wang, Y.; Chen, W.; Wang, L.; Tu, B.; Chen, T.; Liu, B.; Yang, K.; Chang, W. K.; Zhang, X.; Sun, H. L.; Chen, G. C.; Feng, X.; Woo, H. Y.; Djurišic´, A. B.; He, Z.; Guo, X. Adv. Mater. 2019, 1902781.
Afraj, S. N.; Zheng, D.; Velusamy, A.; Ke, W.; Cuthriell, S.; Zhang, X.; Chen, Y.; Lin, C.; Ni, J.-S.; Wasielewski, M. R.; Huang, W.; Yu, J.; Pan, C.-H.; Schaller, R. D.; Chen, M.-C.; Kanatzidis, M. G.; Facchetti,A.; Marks, T. J. ACS Energy Lett. 2022, 7, 2118– 2127.
Joseph, V.; Xia, J.; Sutanto, A. A.; Jankauskas, V.; Momblona, C.; Ding, B.; Rakstys, K.; Balasaravanan, R.; Pan, C. H.; Ni, J. S. ACS Appl. Mater. Interfaces 2022, 14, 22053.
指導教授 陳銘洲 審核日期 2023-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明