博碩士論文 110223083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.116.42.208
姓名 蔡亞筑(Ya-Chu Tsai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以蛋白質結構為基礎的酵素工程改良D-丙胺酸轉胺酶用於一鍋化合成β-取代-D-芳香性胺基酸非對映異構體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-28以後開放)
摘要(中) β-甲基胺基酸為組裝具有生物活性天然產物的重要組成部件,天然產物使用β-甲基色胺酸(β-methyltryptophan, β-MeTrp)作為組合單元(building block)已被發現,本論文首先介紹了數種以β-MeTrp作為前驅體的天然產物,如streptonigrin和maremycin,它們具有抗癌、抗菌、抗病毒和抗真菌等多種生物活性。本論文進一步探討β-MeTrp在各領域的應用,以及天然產物的開發和多樣化。天然產物一直是藥物發現的最佳來源,其中異戊二烯化吲哚生物鹼(Prenylated indole alkaloids, PIAs)是一種多樣性的天然產物,長期以來一直被認為是富含藥性的天然產物。在此基礎上,本研究嘗試以天然的PIAs含色胺酸、脯胺酸雙胜肽組成作為架構,利用多樣性導向的生物合成概念來合成一系列化學上難以合成的相關衍生物,結合C-甲基轉移酶、鹵化物甲基轉移酶、轉胺酶與異構酶等,經由一鍋法酵素催化創造多種非對映異構體之組合單元,再搭配化學合成的組合方式來生產具結構多樣性和立體特異性的生物鹼,以產生類似天然物PIAs且具結構複雜性的生物活性分子。而本論文主要根據D-丙胺酸轉胺酶(D-alanine aminotransferase, DAAT)活性位點上的殘基,以蛋白質工程改良得到突變型DAAT,其中突變型DAAT針對(2R,3S)-β-methyltryptophan會導致產物消旋化,我們因此對其進行結構與機制的探討。本研究旨在利用所獲得的知識及新的生物合成途徑產生新生物鹼衍生物,作為新藥物發現開發的一種策略,透過結構多樣性及合成生物學,期許結構多樣性能對新藥開發有所貢獻,以實現量產具有增益藥理和生物活性的新化合物。
摘要(英) β-Methyl amino acids are crucial building blocks existing in many biologically active natural products. For example, natural products streptonigrin and maremycin each contains a characteric β-methyltryptophan (β-MeTrp), which is derived from tryptophan, featuring such phenomenal biological effects as anticancer, antibacterial, antiviral, and antifungal. In this thesis, I first went over β-MeTrp reported with various applications, then I came to discuss its roles in the development and improvement of natural products for new medicines. Natural products are the origin of many clinically used drugs, in which desipte their synthetic difficulty prenylated indole alkaloids (PIAs) fraught with numerous favorable medicinal properties arouse great interest recently. This study was aimed to synthesize chemically/structurally challenging PIA-related derivatives by taking advantage of the diversity-oriented biosynthesis approach on the framework of tryptophan and proline. By virtue of the biosynthetic utilizations of C-methyltransferase, halide methyltransferase, aminotransferase, and epimerase, enatiospecific building blocks were made from given one-pot enzymatic conditions. These building blocks will be employed to form new complex PIAs, that are dissimilar to natural PIAs with structural diversity and stereochemical specificity but enhanced biological activity instead. The present work investigated D-alanine aminotransferase (DAAT) mutants, of which selected residues at the active site were subjected to protein engineering to bring up steroselectivity. The rationale of the reaction steroselectivity for each individual DAAT mutant was established through thorough structural and biochemical interogations. The final goal of this study is to establish a sound methodology to rewire biosynthetic pathways to produce novel bioactive alkaloids with new functionalities. Hopefully, this semial study has paved a solid foundation for the goal described above.
關鍵字(中) ★ β-甲基色胺酸
★ 甲基轉移酶
★ 轉胺酶
★ 異構酶
★ 一鍋化合成
★ 結構多樣性
關鍵字(英) ★ β-methyltryptophan
★ tryptophan
★ prenylated indole alkaloids (PIAs)
★ building block
★ D-alanine aminotransferase (DAAT)
★ steroselectivity
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
路徑圖目錄 ix
表目錄 x
附錄目錄 xi
符號說明 xii
一、緒論 1
1-1 前言 1
1-2 文獻回顧 5
1-2-1 甲基轉移酶 5
1-2-2 鹵化物甲基轉移酶 8
1-2-3 轉胺酶 10
1-2-4 異構酶 13
1-3 研究動機 14
二、實驗材料與方法 16
2-1 實驗藥品 16
2-2 儀器 18
2-3 菌株與質體 18
2-4 克隆(Cloning)及定點突變(Site-directed mutagenesis) 19
2-5 製備質體DNA 21
2-6 蛋白質表現及純化 22
2-7 蛋白質分析 23
2-7-1 快速蛋白液相層析(Fast protein liquid chromatography, FPLC) 23
2-7-2 SDS-PAGE膠體電泳 23
2-7-3 蛋白質含量測定 24
2-8 酵素活性試驗(Enzyme activity assay) 24
2-8-1 酵素反應 24
2-8-2 胺基酸衍生化反應 25
2-8-3 高效能液相層析(High performance liquid chromatography, HPLC) 25
2-8-4 質譜儀(Mass spectrometry, MS) 25
2-9 化合物PLP-D-Trp製備 26
2-10 蛋白質結晶與數據收集 26
2-11 同位素標定 26
三、結果與討論 27
3-1 蛋白質表現與純化 27
3-2 蛋白質工程提升轉胺酶活性 28
3-3 蛋白質功能分析 29
3-3-1 DAAT突變體反應 29
3-3-2 β-MeTrp類似物反應 36
3-4 同位素標定分析 55
3-5 蛋白質結構分析 57
四、結論 65
五、參考文獻 66
六、附錄 69
參考文獻 〔1〕 Galloway, W.R.J.D., Isidro-Llobet, A. & Spring, D.R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Commun 1 (2010).
〔2〕 Schneider, P. & Schneider, G. Privileged Structures Revisited. Angew Chem Int Ed Engl 56, 7971-7974 (2017).
〔3〕 Kepert, I. et al. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immun 139, 1525-1535 (2017).
〔4〕 Alkhalaf, L.M. & Ryan, K.S. Biosynthetic Manipulation of Tryptophan in Bacteria: Pathways and Mechanisms. Chem Biol 22, 317-328 (2015).
〔5〕 Friedman, M. Analysis, Nutrition, and Health Benefits of Tryptophan. Int J Tryptophan Res 11 (2018).
〔6〕 Hedges, J.B. & Ryan, K.S. Biosynthetic Pathways to Nonproteinogenic alpha-Amino Acids. Chem Rev 120, 3161-3209 (2020).
〔7〕 Wang, X.Z., Kong, D.K., Huang, T.T., Deng, Z.X. & Lin, S.J. StnK2 catalysing a Pictet-Spengler reaction involved in the biosynthesis of the antitumor reagent streptonigrin. Org Biomol Chem 16, 9124-9128 (2018).
〔8〕 Xu, F. et al. Characterization of Streptonigrin Biosynthesis Reveals a Cryptic Carboxyl Methylation and an Unusual Oxidative Cleavage of a N-C Bond. J Am Chem Soc 135, 1739-1748 (2013).
〔9〕 Lan, Y.X. et al. Indole methylation protects diketopiperazine configuration in the maremycin biosynthetic pathway. Sci China Chem 59, 1224-1228 (2016).
〔10〕 Duan, Y.Y. et al. Divergent biosynthesis of indole alkaloids FR900452 and spiro-maremycins. Org Biomol Chem 16, 5446-5451 (2018).
〔11〕 Li, S.M. Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. Phytochemistry 70, 1746-1757 (2009).
〔12〕 Mai, P., Coby, L. & Li, S.M. Different behaviors of cyclic dipeptide prenyltransferases toward the tripeptide derivative ardeemin fumiquinazoline and its enantiomer. Appl Microbiol Biot 103, 3773-3781 (2019).
〔13〕 Li, S.M. Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 27, 57-78 (2010).
〔14〕 Yu, X. et al. Catalytic mechanism of stereospecific formation of cis-configured prenylated pyrroloindoline diketopiperazines by indole prenyltransferases. Chem Biol 20, 1492-1501 (2013).
〔15〕 Broadwater, S.J., Roth, S.L., Price, K.E., Kobaslija, M. & McQuade, D.T. One-pot multi-step synthesis: a challenge spawning innovation. Org Biomol Chem 3, 2899-2906 (2005).
〔16〕 Doyon, T.J. & Narayan, A.R.H. Synthetic Utility of One-Pot Chemoenzymatic Reaction Sequences. Synlett 31, 230-236 (2020).
〔17〕 Hayashi, Y. Pot economy and one-pot synthesis. Chem Sci 7, 866-880 (2016).
〔18〕 Jalali, E. & Thorson, J.S. Enzyme-mediated bioorthogonal technologies: catalysts, chemoselective reactions and recent methyltransferase applications. Curr Opin Biotechnol 69, 290-298 (2021).
〔19〕 Deen, J. et al. Methyltransferase-Directed Labeling of Biomolecules and its Applications. Angew Chem Int Ed Engl 56, 5182-5200 (2017).
〔20〕 Hu, C., Liu, X., Zeng, Y., Liu, J. & Wu, F. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: mechanism and clinical application. Clin Epigenetics 13, 166 (2021).
〔21〕 Reyes, D.A., Sarria, V.M.S., Salazar-Viedma, M. & D′Afonseca, V. Histone Methyltransferases Useful in Gastric Cancer Research. Cancer Inform 20 (2021).
〔22〕 Kong, D. et al. Identification of (2S,3S)-beta-Methyltryptophan as the Real Biosynthetic Intermediate of Antitumor Agent Streptonigrin. Sci Rep 6, 20273 (2016).
〔23〕 Zou, X.W. et al. Structure and mechanism of a nonhaem-iron SAM-dependent C-methyltransferase and its engineering to a hydratase and an O-methyltransferase. Acta Crystallogr D 70, 1549-1560 (2014).
〔24〕 He, H. et al. Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J Am Chem Soc 124, 9729-9736 (2002).
〔25〕 Liao, C.S. & Seebeck, F.P. S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Nat Catal 2, 696-701 (2019).
〔26〕 Tang, M.E.Q.Y. et al. Directed Evolution of a Halide Methyltransferase Enables Biocatalytic Synthesis of Diverse SAM Analogs. Angew Chem Int Edit 60, 1524-1527 (2021).
〔27〕 Tang, Q., Pavlidis, I.V., Badenhorst, C.P.S. & Bornscheuer, U.T. From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases. Chembiochem 22, 2584-2590 (2021).
〔28〕 Pavlidis, I.V. et al. Identification of (S)-selective transaminases for the asymmetric synthesis of bulky chiral amines. Nat Chem 8, 1076-1082 (2016).
〔29〕 Tanizawa, K. et al. The primary structure of thermostable D-amino acid aminotransferase from a thermophilic Bacillus species and its correlation with L-amino acid aminotransferases. J Biol Chem 264, 2450-2454 (1989).
〔30〕 Tanizawa, K., Masu, Y., Asano, S., Tanaka, H. & Soda, K. Thermostable D-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination. J Biol Chem 264, 2445-2449 (1989).
〔31〕 Walton, C.J.W. et al. Engineered Aminotransferase for the Production of d-Phenylalanine Derivatives Using Biocatalytic Cascades. Chemcatchem 10, 470-474 (2018).
〔32〕 Parmeggiani, F. et al. One-Pot Biocatalytic Synthesis of Substituted D-Tryptophans from Indoles Enabled by an Engineered Aminotransferase. Acs Catal 9, 3482-3486 (2019).
〔33〕 Chen, M.H. et al. Structural and Mechanistic Bases for StnK3 and Its Mutant-Mediated Lewis-Acid-Dependent Epimerization and Retro-Aldol Reactions. Acs Catal 12, 1945-1956 (2022).
〔34〕 Yin, W.B., Grundmann, A., Cheng, J. & Li, S.M. Acetylaszonalenin biosynthesis in Neosartorya fischeri. Identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation. J Biol Chem 284, 100-109 (2009).
〔35〕 Mori, T. et al. Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases. Nat Commun 7, 10849 (2016).
〔36〕 Tapuhi, Y., Schmidt, D.E., Lindner, W. & Karger, B.L. Dansylation of amino acids for high-performance liquid chromatography analysis. Anal Biochem 115, 123-129 (1981).
〔37〕 Peisach, D., Chipman, D.M., Van Ophem, P.W., Manning, J.M. & Ringe, D. Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase. Biochemistry 37, 4958-4967 (1998).
指導教授 李宗璘 謝發坤(Tsung-Lin Li Fa-Kuen Shieh) 審核日期 2023-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明