博碩士論文 110223061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:13.58.121.131
姓名 王品溱(Pin-Chen Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以氣相層析技術探討有害空氣污染物溯源與金屬有機骨架材料應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 本篇論文主軸以環境中重要之空氣污染物─揮發性有機化合物作為主軸,因應不同法規目的性區分為有害空氣污染物(HAPs)與光化臭氧前驅物(PAMS)兩大監測技術呈現結果。第一部分是針對工業區周邊敏感受體點之HAPs實場監測;第二部分為探討金屬有機骨架 材料(MOF)之氣體吸脫附特性應用於氣相層析(GC)監測技術。
針對第一部分,於高雄仁大工業區進行有害空氣污染物現地監測與溯源分析,利用熱脫附氣相層析質譜儀(TD-GC/MS)進行線上連續監測空氣中86項HAPs,近7週的連續監測結果顯示含氯有機物氯烷類(一氯-四氯甲烷)、氯乙烯、1,2-二氯乙烷;丁二烯、丙烯腈、正己烷、醋酸乙烯酯等,為該區顯著毒性有機物。藉由比對去年同期監測數據之最大值與平均值,除了醋酸乙烯酯呈現上升趨勢之外,多數物質已明顯下降。藉由與光化學監測站比對結果,共同項目呈現高度相關(r > 0.92),驗證了TD-GC/MS線上連續監測方法之可靠性。
第二部分為探討MOF材料應用於氣體吸脫附特性應用於TD-GC/MS技術,挑選MOF材料中較為疏水之UiO-66、耐高溫UiO-66與UiO-67作為54項C2-C11 PAMS目標物之吸脫附測試,並與商業化多重床碳吸附劑探討吸附能力。研究結果顯示單一材料UiO-66、耐高溫UiO-66與UiO-67即可吸附範圍涵蓋C3-C11的碳氫化合物物種,檢量線線性良好 (R2> 0.995)。 UiO-66、耐高溫UiO-66與多重床碳吸附劑在單位碳感度分析結果顯示彼此之吸脫附能力相近;UiO-67則在中、高碳物種吸附量較多,而輕、極高碳物種則吸附量較少。接續探討耐高溫UiO-66與UiO-67在多次吸、脫附與反覆(>100 次)升降溫後材料結構完整性測試;X光繞射儀測量結果顯示耐高溫UiO-66在高溫後晶體維持完整,而UiO-67則結晶度下降,特性峰型劣化。
最後將耐高溫UiO-66與UiO-67應用於環境周界氣體吸附測試,搭配每日中濃度與空白測試查核,連續測試五天之結果查核回收率為81%-111%之間,相對標準偏差(RSD) < 3%,符合NIEA A505.12B標準方法查核允收標準(回收率≦±25%),顯示單一成分吸附劑耐高溫UiO-66和UiO-67適合當作有機物質吸附材料。
摘要(英) The central focus of this paper revolves around volatile organic compounds (VOCs), which are significant air pollutants in the environment. These compounds are further categorized into hazardous air pollutants (HAPs) and photochemical ozone precursors (PAMS) based on their characteristics. The first section of the paper concentrates on monitoring hazardous air pollutants at sensitive receptor sites in the vicinity of industrial areas. Thermal desorption gas chromatography-mass spectrometry (TD-GC/MS) is employed to conduct online continuous monitoring of 86 toxic organic substances. The monitoring results reveal that toxic organics such as vinyl chloride, 1,2-dichloroethane, butadiene, acrylonitrile, n-hexane, vinyl acetate, etc., are prominent in the Renda Industrial Zone. A comparison of the current and previous year′s monitoring data indicates a decrease for most target compounds, except for vinyl acetate, which displays increased concentrations. When compared with data from the PAMS stations, there is a strong correlation observed among common compounds (r >0.92), validating the robustness of the online continuous monitoring method.
The second part of my research explores the gas adsorption characteristics of metal-organic-framework (MOF) materials. Specifically, the relatively hydrophobic UiO-66, heat-resistant UiO-66, and UiO-67 among MOF materials are chosen as adsorbents to evaluate their adsorption capacity for the 54 PAMS species and to compare with commercial carbon adsorbents. Our findings demonstrate that these three materials can effectively adsorb hydrocarbon species ranging from C3 to C11. The calibration curve exhibits good linearity (R2 > 0.995), and the adsorption capacity of these MOF materials is comparable to that of the multi-bed carbon adsorbents. Additionally, the per-carbon response results indicate that the adsorption capacity of UiO-66 and heat-resistant UiO-66 is similar to that of the multi-bed carbon adsorbents, while UiO-67 exhibits slightly higher adsorption capacity for medium and heavy carbon species but lower adsorption capacity for smaller and extremely heavy carbon species. The study further investigates the structural differences between heat-resistant UiO-66 and UiO-67 after repeated cryogenic adsorption and thermal desorption using X-ray diffractometry. The results reveal that heat-resistant UiO-66 maintains its crystallinity under heating conditions, while the crystallinity of UiO-67 collapses to some degree, accompanied by poor peak shape as shown by the X-ray result.
Finally, the heat-resistant UiO-66 and UiO-67 are subjected to continuous heating cycles (>100) of thermal desorption and analysis along with calibration and blank tests. The recovery rate falls within 81%-111%, and the relative standard deviation (RSD) is less than 3%, complying with the NIEA A505.12B standard method acceptance criteria (recovery≦±25%). This demonstrates that adsorbents incorporating heat-resistant UiO-66 and UiO-67 are ideal for the application of thermal desorption of ambient-level VOCs.
關鍵字(中) ★ 有害空氣污染物
★ 金屬有機骨架材料
關鍵字(英)
論文目次 中文摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 X
第一章 前言 1
1-1 研究背景 1
1-2揮發性有機物(VOCs) 4
1-2-1 有害空氣污染物 (Hazardous air pollutants, HAPs) 5
1-2-2光化臭氧前驅物 6
1-3 VOCs吸附劑 7
1-4 研究動機 17
第二章 文獻回顧 19
2-1 HAPs工業區監測文獻回顧 19
2-1-1國外及台灣有害揮發性有機化合物管理回顧 19
2-1-2揮發性有機化合物的監測方法 21
2-2 金屬有機骨架材料檢測文獻回顧 25
2-2-1 光化臭氧前驅物檢測方法 25
2-2-2金屬有機骨架材料簡介 29
第三章 HAPs工業區實場監測 34
3-1 實驗設備原理與系統建立 34
3-1-1除水設備與前濃縮系統 34
3-1-2 氣相層析質譜儀 39
3-1-3 內標準品 41
3-1-4 注氫調節技術 (Jetclean) 43
3-1-5連續監測系統建立 45
3-2實場監測與結果討論 57
3-2-1實場監測準備 57
3-2-2 實場監測結果 63
3-2-3數據比對 87
3-3小結 93
第四章 金屬有機骨架材料檢測 95
4-1 吸附材料檢測方法 95
4-1-1 UiO-66及UiO-67之製備與鑑定 95
4-1-2 吸附管製作 103
4-1-3 分析系統介紹 107
4-2 UiO-66及UiO-67吸附材料測試結果 111
4-2-1建立吸附材料檢測平台與效能驗證 114
4-2-2初步吸附性測試 120
4-2-3 PLOT管柱測試輕碳物種結果 136
4-2-4 孔徑特徵比較 140
4-2-5 MOFs材料於周界空氣連續檢測結果 147
4-2-6 層析圖譜比較 157
4-3 小結 164
第五章 總結 165
第六章 參考文獻 167
參考文獻 [1] Baird, C. and M. Cann, Environmental Chemistry. New York: WH 608. 2005, Freeman and Company.
[2] Wang, L., R. Atkinson, and J. Arey, Dicarbonyl products of the OH radical-initiated reactions of naphthalene and the C1-and C2-alkylnaphthalenes. Environmental science & technology, 2007. 41(8): p. 2803-2810.
[3] Atkinson, R., Atmospheric chemistry of VOCs and NOx. Atmospheric environment, 2000. 34(12-14): p. 2063-2101.
[4] Hahad, O., J. Lelieveld, F. Birklein, K. Lieb, A. Daiber, and T. Munzel, Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress. Int J Mol Sci, 2020. 21(12).
[5] Zhu, L., D. Shen, and K.H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. Journal of hazardous materials, 2020. 389: p. 122102.
[6] Austin, D.K.W.W.C.C., Determination of complex mixtures of volatile organic compounds in ambient air: an overview. 2006.
[7] Zhang, X., B. Gao, A.E. Creamer, C. Cao, and Y. Li, Adsorption of VOCs onto engineered carbon materials: A review. Journal of hazardous materials, 2017. 338: p. 102-123.
[8] Li, X., L. Zhang, Z. Yang, P. Wang, Y. Yan, and J. Ran, Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Separation and Purification Technology, 2020. 235: p. 116213.
[9] Engewald, K.D.W., Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. 2002.
[10] Wu, T.M., G.R. Wu, H.M. Kao, and J.L. Wang, Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds. J Chromatogr A, 2006. 1105(1-2): p. 168-75.
[11] Su, Y.C., H.M. Kao, and J.L. Wang, Mesoporous silicate MCM-48 as an enrichment medium for ambient volatile organic compound analysis. J Chromatogr A, 2010. 1217(36): p. 5643-51.
[12] Erigoni, A. and U. Diaz, Porous silica-based organic-inorganic hybrid catalysts: A review. Catalysts, 2021. 11(1): p. 79.
[13] Ou-Yang, C.-F., J.-Y. Liu, H.-M. Kao, J.-H. Wang, S.-P. Liu, and J.-L. Wang, Analysis of polycyclic aromatic hydrocarbons using porous material MCM-41 as a sorbent. Analytical Methods, 2013. 5(23): p. 6874-6880.
[14] Chughtai, A.H., N. Ahmad, H.A. Younus, A. Laypkov, and F. Verpoort, Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 2015. 44(19): p. 6804-6849.
[15] Li, J.-R., J. Sculley, and H.-C. Zhou, Metal–organic frameworks for separations. Chemical reviews, 2012. 112(2): p. 869-932.
[16] Lin, R.-B., S. Xiang, W. Zhou, and B. Chen, Microporous metal-organic framework materials for gas separation. Chem, 2020. 6(2): p. 337-363.
[17] Kreno, L.E., K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, and J.T. Hupp, Metal–organic framework materials as chemical sensors. Chemical reviews, 2012. 112(2): p. 1105-1125.
[18] Horcajada, P., T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, and C. Kreuz, Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials, 2010. 9(2): p. 172-178.
[19] Vikrant, K., M. Cho, A. Khan, K.-H. Kim, W.-S. Ahn, and E.E. Kwon, Adsorption properties of advanced functional materials against gaseous formaldehyde. Environmental research, 2019. 178: p. 108672.
[20] Khan, N.A., Z. Hasan, and S.H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. Journal of hazardous materials, 2013. 244: p. 444-456.
[21] EPA, U.S., Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography–Mass Spectrometry (GC-MS). 1999.
[22] 沈克鵬,固定污染源空氣污染物危害影響評估暨消費性產品揮發性有機物管制推動計畫,工業技術研究院綠能與環境研究所,2014。
[23] 行政院環境保護署,固定污染源有機性有害空氣污染物管制策略研訂及推動計畫,2009。
[24] 行政院環境保護署,固定污染源有害空氣污染物排放標準草案總說明,2019。
[25] 行政院環保署, 空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法(NIEA A505.12B)
[26] 王介亨-王家麟, 環境中揮發性有機物質監測儀器. 科儀新知, 第二十六卷第五期, 2005: p. 24-37.
[27] Matsuda, R., R. Kitaura, S. Kitagawa, Y. Kubota, R.V. Belosludov, T.C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, and Y. Kawazoe, Highly controlled acetylene accommodation in a metal–organic microporous material. Nature, 2005. 436(7048): p. 238-241.
[28] Wang, J., Y. Zhang, Y. Su, X. Liu, P. Zhang, R.-B. Lin, S. Chen, Q. Deng, Z. Zeng, and S. Deng, Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C2H2/CO2 separation. Nature communications, 2022. 13(1): p. 200.
[29] Lee, J., C.Y. Chuah, J. Kim, Y. Kim, N. Ko, Y. Seo, K. Kim, T.H. Bae, and E. Lee, Separation of acetylene from carbon dioxide and ethylene by a water‐stable microporous metal–organic framework with aligned imidazolium groups inside the channels. Angewandte Chemie, 2018. 130(26): p. 7995-7999.
[30] Zhang, X., M. Fu, H. Liu, Y. Wang, Y. Zou, L. Wang, C. Li, Y. Lu, L. Zhou, and X. Cui, A copper-based metal–organic framework with a suitable pore environment for effective ethylene purification. Inorganic Chemistry Frontiers, 2022. 9(9): p. 2104-2108.
[31] Gu, Z.-Y., G. Wang, and X.-P. Yan, MOF-5 metal− organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde. Analytical chemistry, 2010. 82(4): p. 1365-1370.
[32] Zhang, S., Z. Du, and G. Li, Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta, 2013. 115: p. 32-39.
[33] Dutta, T., K.-H. Kim, R.J. Brown, Y.-H. Kim, and D. Boukhvalov, Metal-organic framework and Tenax-TA as optimal sorbent mixture for concurrent GC-MS analysis of C1 to C5 carbonyl compounds. Scientific reports, 2018. 8(1): p. 5033.
[34] Lin, X., L. Tang, J. Zhao, S. Liu, and Y. Xie, Efficient determination of BTX compounds based on UiO-66-diatomite composite enrichment and thermal desorption GC–MS. Microchemical Journal, 2022. 181: p. 107731.
[35] Zou, D. and D. Liu, Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Materials Today Chemistry, 2019. 12: p. 139-165.
[36] Cavka, J.H., S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
[37] DeCoste, J.B., G.W. Peterson, H. Jasuja, T.G. Glover, Y.-g. Huang, and K.S. Walton, Stability and degradation mechanisms of metal–organic frameworks containing the Zr 6 O 4 (OH) 4 secondary building unit. Journal of Materials Chemistry A, 2013. 1(18): p. 5642-5650.
[38] Chavan, S., J.G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri, S. Jakobsen, M.H. Nilsen, L. Valenzano, C. Lamberti, and K.P. Lillerud, H 2 storage in isostructural UiO-67 and UiO-66 MOFs. Physical Chemistry Chemical Physics, 2012. 14(5): p. 1614-1626.
[39] Duerinck, T., R. Bueno-Perez, F. Vermoortele, D. De Vos, S. Calero, G. Baron, and J. Denayer, Understanding hydrocarbon adsorption in the UiO-66 metal–organic framework: separation of (Un) saturated linear, branched, cyclic adsorbates, including stereoisomers. The Journal of Physical Chemistry C, 2013. 117(24): p. 12567-12578.
[40] Lin, X.-T., G. Sun, J.-Q. Zhao, L.-L. Tang, S.-H. Li, and Y.-B. Xie, UiO-66 Selective Enrichment Integrated with Thermal Desorption GC-MS for Detection of Benzene Homologues in Ambient Air. Journal of Analytical Methods in Chemistry, 2021. 2021.
[41] Zhang, X., Y. Yang, X. Lv, Y. Wang, N. Liu, D. Chen, and L. Cui, Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework. Journal of hazardous materials, 2019. 366: p. 140-150.
[42] Shearer, G.C., S. Chavan, J. Ethiraj, J.G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, and K.P. Lillerud, Tuned to perfection: ironing out the defects in metal–organic framework UiO-66. Chemistry of Materials, 2014. 26(14): p. 4068-4071.
[43] 陳芳翊,開發醛酮類化合物與金屬有機骨架材料應用於周界揮發性有機物檢測方法,化學學系,國立中央大學,2022。.
[44] 王美珠,碩士論文,針對工業排放之污染性有機氣態物質開發連續監測技術,化學學系,國立中央大學,2016。.
[45] 朱晨瑄, 以線上熱脫附氣相層析質譜法監測空氣中有害空氣污染物,化學學系,國立中央大學,2020。
[46] 中華民國行政院環保署, 空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法 (NIEA A505.12B). 2013.
[47] Agency, U.S.E.P., Compendium Method TO-17 Determination of Volatile Organic
Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes 1999.
[48] Agency, U.S.E.P., Compendium Method TO-15 Determination Of Volatile Organic Compounds (VOCs ) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS) 1999.
[49] Gong, Q. and K.L. Demerjian, Hydrocarbon losses on a regenerated nation® dryer. Journal Of The Air & Waste Management Association, 1995. 45(6): p. 490-493.
[50] Burns, W.F., D.T. Tingey, R.C. Evans, and E.H. Bates, Problems with a Nafion® membrane dryer for drying chromatographic samples. Journal of Chromatography A, 1983. 269: p. 1-9.
[51] Gawłowski, J., T. Gierczak, E. Pietruszyñska, M. Gawryś, and J. Niedzielski, Dry purge for the removal of water from the solid sorbents used to sample volatile organic compounds from the atmospheric air. Analyst, 2000. 125(11): p. 2112-2117.
[52] Agilent 5977 Series EI Source Selection Guide.
[53] Agilent 5977 Series MSD System Concepts Guide.
[54] 曾美惠,碩士論文,離子通道孔徑對熱脫附 GC-MS 連續監測空氣有害物質穩定性的影響,化學學系,國立中央大學,2021。.
[55] 詹竹玉,藉由注氫技術改善質譜儀電子游離源條件以優化空氣有害污染物連續監測方法,化學學系,國立中央大學,2022。.
[56] LabWrench, GC - Gas Chromatography/GC Accessories/Agilent Technologies-JetCleanSelf-CleaningIonSource. https://www.labwrench.com/equipment/24541/agilent-technologies-jetclean-self-cleaning-ion-source. 2022.
[57] Lesieur, M., E. Almasi, and T. Sheehan, Significant Robustness Improvements of PAHs Analysis in Palm Oil Using the JetClean Self-Cleaning Ion Source in a GC/MS/MS System. Agilent Technologies, 2017.
[58] Andrianova, A.A. and B.D. Quimby, Optimized GC/MS Analysis for PAHs in Challenging Matrices. Application Note Food Testing & Agriculture, 2019.
[59] Wong, D., Zhao, L., Quimby, B., Riener, J., EU Priority PAH Analysis in Pumpkin Seed Oil Using Bond Elut EMR–Lipid Cleanup by GC/MS/MS. Application Note Food Testing & Agriculture, Agilent Technologies Inc, United States, 2019.
[60] Shimadzu Instruments definition of S/N ratio
https://www.shimadzu.com.tw/service-support/faq/gas-chromatograph-mass-spectrometry/sn/index.html.
[61] 行政院環境保護署土汙基管會, 台塑仁武廠污染事件; https://enews.epa.gov.tw/Page/894720A1EB490390/0ea1ee76-acef-49ea-b0d2-753882b5532f. .
[62] 報導者-房慧真. 【高雄環境難民大風吹】集體失憶的汙染歷史,大社被抹除的遷廠承諾. 2019; https://www.twreporter.org/a/kaohsiung-environment-refugee-dashe.
[63] 行政院環境保護署土污基管會. 台塑仁武廠污染事件. 2019; https://enews.epa.gov.tw/Page/894720A1EB490390/0ea1ee76-acef-49ea-b0d2-753882b5532f.
[64] 公視新聞網,台聚仁武焚化爐管線爆炸; https://news.pts.org.tw/article/590601 [16 Jul.2022].
[65] 聯合新聞網. 仁大工業區 仍有3致癌物須減量. 2021; https://udn.com/news/story/7327/5769857.
[66] 高雄市政府環境保護局空氣品質管理中心. 空氣品質監測站監測數值查詢. 2021; https://www.ksaqmc.com.tw/MIS/MisBackup/AirInfoBP.aspx.
[67] Guo, S.-R., 空氣中氯乙烯, 1, 2-二氯乙烷 GC/MS 在線監測方法. 2017, National Central University.
[68] Sittig, M., Vinyl Chloride and PVC manufacture: process and environmental aspects. 1978: Noyes Data Corporation.
[69] Registry, A.f.T.S.a.D., ToxFAQs™ for Styrene. 2012.
[70] Registry, A.f.T.S.a.D., ToxFAQs™ for Acrylonitrile. 1999.
[71] 行政院環境保護署, 臭氧層保護相關法規. 2019.
[72] Tsai, W.-T., Fate of chloromethanes in the atmospheric environment: Implications for human health, ozone formation and depletion, and global warming impacts. Toxics, 2017. 5(4): p. 23.
[73] Montzka, S., S. Reimann, S. O′Doherty, A. Engel, K. Krüger, and W. Sturges, Ozone-depleting substances (ODSs) and related chemicals. 2011, World Meteorological Organization.
[74] Registry, A.f.T.S.a.D., ToxFAQs™ for 1,3-Butadiene. 2012.
[75] 吳征戰, 探討不同官能基在金屬有機骨架材料上的配位基對UiO-66在硝酸水相合成的影響. 碩士論文, 2016.
[76] Kandiah, M., M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, and K.P. Lillerud, Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010. 22(24): p. 6632-6640.
[77] 羅聖全, 年 5 月, 科學基礎之重要利器-掃描式電子顯微鏡 (SEM), 科學研習, 台灣中央大學. 2013.
[78] Stenzel, M.H., Remove organics by activated carbon adsorption. Chemical Engineering Progress;(United States), 1993. 89(4).
[79] Harris, Daniel C , Quantitative chemical analysis, 2010.
[80] Zdravkov, B., J. Čermák, M. Šefara, and J. Janků, Pore classification in the characterization of porous materials: A perspective. Open Chemistry, 2007. 5(2): p. 385-395.
[81] Wu, T.-M., G.-R. Wu, H.-M. Kao, and J.-L. Wang, Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds. Journal of Chromatography A, 2006. 1105(1): p. 168-175.
[82] Wang, H., Q. Wang, S.J. Teat, D.H. Olson, and J. Li, Synthesis, structure, and selective gas adsorption of a single-crystalline zirconium based microporous metal–organic framework. Crystal Growth & Design, 2017. 17(4): p. 2034-2040.
[83] Feng, L., S. Yuan, L.-L. Zhang, K. Tan, J.-L. Li, A. Kirchon, L.-M. Liu, P. Zhang, Y. Han, and Y.J. Chabal, Creating hierarchical pores by controlled linker thermolysis in multivariate metal–organic frameworks. Journal of the American Chemical Society, 2018. 140(6): p. 2363-2372.
[84] Ko, N., J. Hong, S. Sung, K.E. Cordova, H.J. Park, J.K. Yang, and J. Kim, A significant enhancement of water vapour uptake at low pressure by amine-functionalization of UiO-67. Dalton Transactions, 2015. 44(5): p. 2047-2051.
[85] Mondloch, J.E., M.J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J.T. Hupp, and O.K. Farha, Are Zr 6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical communications, 2014. 50(64): p. 8944-8946.
[86] Athar, M., P. Rzepka, D. Thoeny, M. Ranocchiari, and J.A. van Bokhoven, Thermal degradation of defective high-surface-area UiO-66 in different gaseous environments. RSC advances, 2021. 11(61): p. 38849-38855.
[87] Hamon, L., C. Serre, T. Devic, T. Loiseau, F. Millange, G. Ferey, and G.D. Weireld, Comparative study of hydrogen sulfide adsorption in the MIL-53 (Al, Cr, Fe), MIL-47 (V), MIL-100 (Cr), and MIL-101 (Cr) metal− organic frameworks at room temperature. Journal of the American Chemical Society, 2009. 131(25): p. 8775-8777.
[88] Agilent,AgilentMassHunterWorkstationSoftwareQuantitativeAnalysis https://www.agilent.com/cs/library/usermanuals/public/G3335-90000%20QuantitationDataSet.pdf.
指導教授 王家麟 劉文治 審核日期 2023-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明