博碩士論文 110223076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.22.171.136
姓名 蔡政庭(Cheng-Ting Tsai)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Development of a Machine Learning-Based Predictive Model for Helical Antimicrobial Peptides Against Specific Strains)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-15以後開放)
摘要(中) 過度使用抗生素已導致多重藥物耐藥(MDR)病原體的出現,對公共衛生造成了重大
威脅。從結構和化學上多樣的化合物中衍生出的抗微生物肽(AMPs)為解決這個問題提
供了一個有前途的解決方案。然而,由於流體膜中結構-功能關係的動態性質,鑒定有效
的 AMPs 一直具有挑戰性。機器學習(ML)算法已被應用來應對這一挑戰,我們使用 ML
基於螺旋狀AMP 序列訓練了一個預測模型,以針對特定的細菌進行靶向。已開發了多種
ML 模型來預測 AMPs。然而,這些方法大多主要依賴於氨基酸序列,對於預測針對特定
菌株的抗微生物活性,僅有限地納入了 3D 結構特徵和 ML 模型內的特定相互作用。在本
研究中,我們提出了一個線性 AMP 的預測模型,該模型包括以下重要特徵:(i)透過圖
論將AMP 的 3D 結構進行比較;(ii)根據分子動力學模擬推導出的特定相互作用的實現;
(iii)考慮到細菌的負電性特性的 AMP 膜插入模型。此外,我們的預測模型已經開發
出來區分對特定菌株具有活性的肽與其他肽,從而增強了 AMP 開發中的特異性。此外,
我們還使用了低序列識別的肽來評估我們模型的準確性。我們的預測模型可以快速設計
出有效的 AMPs。設計了 7 個潛在的 AMPs 並進行了體外細胞實驗,顯示成功率高達 71
% , 以 提 高 AMPs 的 抗 菌 效 果 。 AMP-META 可 免 費 訪 問 http://ai-
meta.chem.ncu.edu.tw/amp-meta
摘要(英) Excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR)
pathogens, which pose a significant threat to public health. Antimicrobial peptides (AMPs)
derived from structurally and chemically diverse compounds offer a promising solution to
combat this problem. However, identifying effective AMPs has been challenging due to the
dynamic nature of structure-function relationships in fluid membranes. Machine learning (ML)
algorithms have been employed to address this challenge, and we trained a predictive model
based on helical AMP sequences using ML to target specific bacteria. Various ML models have
been developed to predict AMPs. However, most of these methods have primarily relied on
amino acid sequences, with limited incorporation of 3D structural features and specific
interactions within ML models to predict antimicrobial potency against specific strains. In this
study, we present a predictive model for linear AMPs, which incorporates the following
significant features: (i) Graph theory considerations, taking into account the native contacts of
3D AMPs; (ii) Implementation of specific interactions derived from molecular dynamics
simulations; and (iii) Incorporation of a membrane-insertion model of AMPs that considers the
negatively-charged nature of bacteria. Furthermore, our predictive model has been developed
to differentiate peptides that are active against particular strains from others, thereby enhancing
the specificity in AMP development. Additionally, low-sequence-identified peptides were
employed to evaluate the accuracy of our model. Our predictive models enable rapid
engineering of potent AMPs. Designed 7 potential AMPs and conducted in vitro cell
experiments, showing a success rate of up to 71% to improve the antibacterial effect of AMPs.
AMP-META is freely accessible at http://ai-meta.chem.ncu.edu.tw/amp-meta
關鍵字(中) ★ 機器學習
★ 抗菌肽
★ 三維結構
★ 預測模型
★ LightGBM
★ AMP-META
關鍵字(英) ★ Machine Learning
★ Antimicrobial peptides
★ 3D structure
★ Predictive model
★ LightGBM
★ AMP-META
論文目次 Contents
摘要 ............................................................................................................................................. i
Abstract ....................................................................................................................................... ii
Acknowledgment ....................................................................................................................... iii
Contents .................................................................................................................................... iv
List of Figures ............................................................................................................................ vi
List of Tables ........................................................................................................................... viii
Chapter 1— Introduction ........................................................................................................ 1
The Origins, Overuse, and Challenges of Antibiotics: Mechanisms and
Development Difficulties. .................................................................................................. 1
Understanding the Mechanisms of Action of Antimicrobial Peptides: A
Fundamental Overview. ...................................................................................................... 3
A Review of Current AI Literature in AMPs .......................................................... 5
In this study ............................................................................................................ 8
Chapter 2— Methods ............................................................................................................ 11
2.1 Database................................................................................................................ 11
2.2 Construction Training Dataset .............................................................................. 13
2.3 Construction Validation set, Test set and New AMP set ....................................... 19
2.4 Feature .................................................................................................................. 21
2.4.1 Sequence ................................................................................................... 21
2.4.2 Physicochemical Properties ...................................................................... 23
2.4.3 Position-specific Features ......................................................................... 30
2.4.4 AMPs interaction with membrane ............................................................ 35
2.5 Algorithm ............................................................................................................. 36
2.5.1 Light Gradient Boosting Machine ............................................................ 36
2.5.2 Support Vector Machine ........................................................................... 40
2.5.3 Artificial Neural Network ......................................................................... 42
2.5.4 Convolutional Neural Network ................................................................. 44
2.5.5 Recurrent Neural Network ........................................................................ 46
2.5.6 Activation function .................................................................................... 47
2.6 Performance evaluation ........................................................................................ 49
Chapter 3— Result and Discussion ....................................................................................... 53
3.1 Performance of Predictive Models ....................................................................... 56
3.1.1 Performance of Predictive Models against E. Coli ATCC 25922 ............ 56
3.1.2 Performance of Predictive Models against P. aeruginosa ATCC 27853 .. 61
3.1.3 Performance of Predictive Models against S. aureus ATCC 25923 ......... 67
3.1.4 Performance of Predictive Models against Human Erythrocyte .............. 71




v



3.1.5 In Silico Testing of Predictive Models ..................................................... 77
3.1.6 Summary ................................................................................................... 80
3.2 In Silico Design of AMPs and In Vitro MIC Test ................................................ 81
Chapter 4— Conclusion ........................................................................................................ 85
Reference .................................................................................................................................. 88
Supporting Information ............................................................................................................ 97
參考文獻 1. Mól, A.; S. Castro, M.; Fontes, W., NetWheels: A web application to create high quality peptide helical wheel and net projections. 2018.
2. Brown, K., Penicillin Man: Alexander Fleming and the Antibiotic Revolution. Sutton: 2004.
3. McDermott, P. F.; Zhao, S.; Wagner, D. D.; Simjee, S.; Walker, R. D.; White, D. G., The food safety perspective of antibiotic resistance. Anim Biotechnol 2002, 13 (1), 71-84.
4. Kapoor, G.; Saigal, S.; Elongavan, A., Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol 2017, 33 (3),
300-305.
5. Abushaheen, M. A.; Muzaheed; Fatani, A. J.; Alosaimi, M.; Mansy, W.; George, M.; Acharya, S.; Rathod, S.; Divakar, D. D.; Jhugroo, C.; Vellappally, S.; Khan, A. A.; Shaik, J.; Jhugroo, P., Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon 2020, 66 (6), 100971.
6. DiMasi, J. A.; Grabowski, H. G.; Hansen, R. W., Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ 2016, 47, 20-33.
7. Desselle, M. R.; Neale, R.; Hansford, K. A.; Zuegg, J.; Elliott, A. G.; Cooper, M. A.; Blaskovich, M. A., Institutional profile: Community for Open Antimicrobial Drug Discovery - crowdsourcing new antibiotics and antifungals.
Future Sci OA 2017, 3 (2), Fso171.
8. Wu, Q.; Ke, H.; Li, D.; Wang, Q.; Fang, J.; Zhou, J., Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery. Curr Top Med Chem 2019, 19 (1), 4-16.
9. Bechinger, B.; Gorr, S. U., Antimicrobial Peptides: Mechanisms of Action and Resistance. J Dent Res 2017, 96 (3), 254-260.
10. Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D. H.; He, Q., The antimicrobial peptides and their potential clinical applications. Am J Transl Res 2019, 11 (7), 3919-3931.
11. Han, H. M.; Gopal, R.; Park, Y., Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Amino Acids 2016, 48 (2), 505-22.
12. Wang, G.; Li, X.; Wang, Z., APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research 2015, 44 (D1), D1087-D1093.
13. Brogden, K., Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature reviews. Microbiology 2005, 3, 238-50.
14. Almeida, P. F.; Pokorny, A., Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry 2009, 48
(34), 8083-93.
15. Waghu, F. H.; Barai, R. S.; Gurung, P.; Idicula-Thomas, S., CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides.
Nucleic Acids Res 2016, 44 (D1), D1094-7.
16. Waghu, F. H.; Idicula-Thomas, S., Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Science 2020, 29
(1), 36-42.
17. Thomas, S.; Karnik, S.; Barai, R. S.; Jayaraman, V. K.; Idicula-Thomas, S., CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 2010, 38 (Database issue), D774-80.
18. Waghu, F. H.; Gopi, L.; Barai, R. S.; Ramteke, P.; Nizami, B.; Idicula-Thomas, S., CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 2014, 42 (Database issue), D1154-8.
19. Xiao, X.; Wang, P.; Lin, W. Z.; Jia, J. H.; Chou, K. C., iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem 2013, 436 (2), 168-77.
20. Meher, P. K.; Sahu, T. K.; Saini, V.; Rao, A. R., Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou′s general PseAAC. Sci Rep 2017, 7, 42362.
21. Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D. E.; Tartakovsky, M.; Managadze, G.; Grigolava, M.; Makhatadze, G. I.; Pirtskhalava, M., Predictive Model of Linear Antimicrobial Peptides Active against Gram-Negative Bacteria. J Chem Inf Model 2018, 58 (5), 1141-1151.
22. Yan, J.; Bhadra, P.; Li, A.; Sethiya, P.; Qin, L.; Tai, H. K.; Wong, K. H.; Siu, S. W. I., Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning. Mol Ther Nucleic Acids 2020, 20, 882-894.
23. Hochreiter, S.; Schmidhuber, J., Long Short-Term Memory. Neural Computation 1997, 9 (8), 1735-1780.
24. Gers, F. A.; Schmidhuber, J.; Cummins, F., Learning to Forget: Continual Prediction with LSTM. Neural Computation 2000, 12 (10), 2451-2471.
25. Schuster, M.; Paliwal, K. K., Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing 1997, 45 (11), 2673-2681.
26. Youmans, M.; Spainhour, C.; Qiu, P. In Long short-term memory recurrent neural networks for antibacterial peptide identification, 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 13-16 Nov. 2017; 2017; pp 498-502.
27. Sharma, R.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S.; Kumar Singh, R., Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec. Brief Bioinform 2021, 22 (5).
28. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J., Efficient Estimation of Word Representations in Vector Space. 2013.
29. Wang, C.; Garlick, S.; Zloh, M., Deep Learning for Novel Antimicrobial Peptide Design. Biomolecules 2021, 11 (3).
30. Veltri, D.; Kamath, U.; Shehu, A., Deep learning improves antimicrobial peptide recognition. Bioinformatics 2018, 34 (16), 2740-2747.
31. WHO publishes list of bacteria for which new antibiotics are urgently needed [Internet]. https://www.who.int/en/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. (accessed 22 Sept).
32. Nagarajan, D.; Roy, N.; Kulkarni, O.; Nanajkar, N.; Datey, A.; Ravichandran, S.; Thakur, C.; T, S.; Aprameya, I. V.; Sarma, S. P.; Chakravortty, D.; Chandra, N., Omega76: A designed antimicrobial peptide to combat carbapenem- and tigecycline-resistant Acinetobacter baumannii. Sci Adv
2019, 5 (7), eaax1946.
33. Pillong, M.; Hiss, J. A.; Schneider, P.; Lin, Y. C.; Posselt, G.; Pfeiffer, B.; Blatter, M.; Muller, A. T.; Bachler, S.; Neuhaus, C. S.; Dittrich, P. S.; Altmann, K. H.; Wessler, S.; Schneider, G., Rational Design of Membrane-Pore-Forming Peptides. Small 2017, 13 (40).
34. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.;
Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D., Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596 (7873), 583-589.
35. Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M., ColabFold: making protein folding accessible to all. Nature Methods 2022, 19 (6), 679-682.
36. Lomize, A. L.; Todd, S. C.; Pogozheva, I. D., Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Sci 2022, 31 (1), 209-220.
37. Pirtskhalava, M.; Amstrong, A. A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D. E.; Tartakovsky, M., DBAASP v3: database of antimicrobial/cytotoxic activity and
structure of peptides as a resource for development of new therapeutics.
Nucleic Acids Res 2021, 49 (D1), D288-d297.
38. Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H., DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res 2022, 50 (D1), D488-d496.
39. Shingate, P.; Sowdhamini, R., Analysis of Domain-Swapped Oligomers Reveals Local Sequence Preferences and Structural Imprints at the Linker Regions and Swapped Interfaces. PLOS ONE 2012, 7 (7), e39305.
40. Touw, W. G.; Baakman, C.; Black, J.; te Beek, T. A.; Krieger, E.; Joosten, R. P.; Vriend, G., A series of PDB-related databanks for everyday needs.
Nucleic Acids Res 2015, 43 (Database issue), D364-8.
41. Kabsch, W.; Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22 (12), 2577-637.
42. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W., CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28 (23), 3150-3152.
43. Chen, Y.; Guarnieri, M. T.; Vasil, A. I.; Vasil, M. L.; Mant, C. T.; Hodges, R. S., Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 2007, 51 (4), 1398-406.
44. Jiang, Z. Q.; Vasil, A. I.; Gera, L.; Vasil, M. L.; Hodges, R. S., Rational Design of alpha-Helical Antimicrobial Peptides to Target Gram-negative
Pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of Charge, ′Specificity Determinants,′ Total Hydrophobicity, Hydrophobe Type
and Location as Design Parameters to Improve the Therapeutic Ratio. Chem Biol Drug Des 2011, 77 (4), 225-240.
45. Yin, L. M.; Edwards, M. A.; Li, J.; Yip, C. M.; Deber, C. M., Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in
peptide-membrane interactions. J Biol Chem 2012, 287 (10), 7738-45.
46. Deslouches, B.; Steckbeck, J. D.; Craigo, J. K.; Doi, Y.; Mietzner, T. A.;
Montelaro, R. C., Rational Design of Engineered Cationic Antimicrobial Peptides
Consisting Exclusively of Arginine and Tryptophan, and Their Activity against
Multidrug-Resistant Pathogens. Antimicrob Agents Ch 2013, 57 (6), 2511-2521.
47. Deslouches, B.; Phadke, S. M.; Lazarevic, V.; Cascio, M.; Islam, K.;
Montelaro, R. C.; Mietzner, T. A., De novo generation of cationic antimicrobial
peptides: influence of length and tryptophan substitution on antimicrobial
activity. Antimicrob Agents Chemother 2005, 49 (1), 316-22.
48. Jenssen, H., Descriptors for antimicrobial peptides. Expert Opin Drug Discov
2011, 6 (2), 171-84.
49. Miyata, R.; Moriwaki, Y.; Terada, T.; Shimizu, K., Prediction and analysis of
antifreeze proteins. Heliyon 2021, 7 (9), e07953.
50. Li, J.; Koh, J. J.; Liu, S.; Lakshminarayanan, R.; Verma, C. S.;
Beuerman, R. W., Membrane Active Antimicrobial Peptides: Translating
Mechanistic Insights to Design. Front Neurosci 2017, 11, 73.
51. Koo, H. B.; Seo, J., Antimicrobial peptides under clinical investigation. Peptide
Science 2019, 111 (5), e24122.
52. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature 2002,
415 (6870), 389-395.
53. Moon, C. P.; Fleming, K. G., Side-chain hydrophobicity scale derived from
transmembrane protein folding into lipid bilayers. Proceedings of the National
Academy of Sciences 2011, 108 (25), 10174-10177.
54. Neshani, A.; Zare, H.; Akbari Eidgahi, M. R.; Hooshyar Chichaklu, A.;
Movaqar, A.; Ghazvini, K., Review of antimicrobial peptides with anti-
Helicobacter pylori activity. Helicobacter 2019, 24 (1), e12555.
55. Teixeira, V. H.; Vila-Viçosa, D.; Reis, P. B. P. S.; Machuqueiro, M., pKa
Values of Titrable Amino Acids at the Water/Membrane Interface. Journal of
Chemical Theory and Computation 2016, 12 (3), 930-934.
56. Panahi, A.; Brooks, C. L., Membrane Environment Modulates the pKa Values
of Transmembrane Helices. The Journal of Physical Chemistry B 2015, 119 (13),
4601-4607.
57. Zhang, L.; Falla, T. J., Host defense peptides for use as potential therapeutics.
Curr Opin Investig Drugs 2009, 10 (2), 164-71.
58. Conchillo-Sole, O.; de Groot, N. S.; Aviles, F. X.; Vendrell, J.; Daura, X.;
Ventura, S., AGGRESCAN: a server for the prediction and evaluation of "hot
spots" of aggregation in polypeptides. BMC Bioinformatics 2007, 8, 65.
59. Collantes, E. R.; Dunn, W. J., 3rd, Amino acid side chain descriptors for
quantitative structure-activity relationship studies of peptide analogues. J Med
Chem 1995, 38 (14), 2705-13.
60. Boman, H. G., Antibacterial peptides: basic facts and emerging concepts. J
Intern Med 2003, 254 (3), 197-215.
61. New Chemical Descriptors Relevant for the Design of Biologically Active
Peptides. A Multivariate Characterization of 87 Amino Acids. 1997.
62. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.;
Liu, T.-Y., LightGBM: a highly efficient gradient boosting decision tree. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc.: Long Beach, California, USA, 2017;
pp 3149–3157.
63. Microsoft Microsoft/LightGBM: LightGBM is a fast, distributed, high-
performance gradient boosting framework based on decision tree algorithms,
which is under the umbrella of the DMTK project of Microsoft.
https://github.com/Microsoft/LightGBM/.
64. Chen, T.; Guestrin, C., XGBoost: A Scalable Tree Boosting System. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Association for Computing Machinery: San
Francisco, California, USA, 2016; pp 785–794.
65. Cortes, C.; Vapnik, V., Support-vector networks. Machine Learning 1995, 20
(3), 273-297.
66. Bishop, C. M.; Nasrabadi, N. M., Pattern recognition and machine learning.
Springer: 2006; Vol. 4.
67. Trevor Hastie, R. T., Jerome Friedman, The Elements of Statistical Learning. 2
ed.; Springer New York, NY: 2009; p XXII, 745.
68. Schölkopf, B.; Smola, A. J., Learning with Kernels. 2018.
69. Chang, C.-C.; Lin, C.-J., LIBSVM: A library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2011, 2 (3), Article 27.
70. Lin, H.-T.; Lin, C.-J.; Weng, R. C.-H., A note on Platt’s probabilistic outputs
for support vector machines. Machine Learning 2007, 68, 267-276.
71. Haykin, S., Neural networks: a comprehensive foundation. Prentice Hall PTR:
1998.
72. Bishop, C. M., Neural networks for pattern recognition. Oxford university
press: 1995.
73. Goodfellow, I.; Bengio, Y.; Courville, A., Deep learning. MIT press: 2016.
74. LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning. nature 2015, 521 (7553),
436-444.
75. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.;
Garcia-Rodriguez, J., A review on deep learning techniques applied to semantic
segmentation. arXiv preprint arXiv:1704.06857 2017.
76. Krizhevsky, A.; Sutskever, I.; Hinton, G. E., Imagenet classification with
deep convolutional neural networks. Communications of the ACM 2017, 60 (6), 84-90.
77. Lipton, Z. C.; Kale, D. C.; Elkan, C.; Wetzel, R., Learning to diagnose with
LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677 2015.
78. Graves, A., Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 2013.
79. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y., Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 2014.
80. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y., On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 2014.
81. Yu, Y.; Si, X.; Hu, C.; Zhang, J., A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation 2019, 31 (7), 1235-1270.
82. Nair, V.; Hinton, G. E. In Rectified Linear Units Improve Restricted Boltzmann Machines, International Conference on Machine Learning, 2010.
83. Glorot, X.; Bordes, A.; Bengio, Y., Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Geoffrey, G.; David, D.; Miroslav, D., Eds. PMLR: Proceedings of Machine Learning Research, 2011; Vol. 15, pp 315--323.
84. He, K.; Zhang, X.; Ren, S.; Sun, J. In Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, Proceedings of the IEEE international conference on computer vision, 2015; pp 1026-1034.
85. Clevert, D.-A.; Unterthiner, T.; Hochreiter, S., Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289 2015.
86. Clevert, D. A.; Unterthiner, T.; Povysil, G.; Hochreiter, S., Rectified factor networks for biclustering of omics data. Bioinformatics 2017, 33 (14), i59-i66.
87. Santamaría, C.; Larios, S.; Quirós, S.; Pizarro-Cerda, J.; Gorvel, J. P.; Lomonte, B.; Moreno, E., Bactericidal and antiendotoxic properties of short cationic peptides derived from a snake venom Lys49 phospholipase A2. Antimicrob Agents Chemother 2005, 49 (4), 1340-5.
88. Yu, H. Y.; Huang, K. C.; Yip, B. S.; Tu, C. H.; Chen, H. L.; Cheng, H. T.; Cheng, J. W., Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities. Chembiochem 2010, 11 (16), 2273-82.
89. Murillo, L. A.; Lan, C. Y.; Agabian, N. M.; Larios, S.; Lomonte, B., Fungicidal activity of a phospholipase-A2-derived synthetic peptide variant against Candida albicans. Rev Esp Quimioter 2007, 20 (3), 330-3.
90. Souza, P. F. N.; Marques, L. S. M.; Oliveira, J. T. A.; Lima, P. G.; Dias, L. P.; Neto, N. A. S.; Lopes, F. E. S.; Sousa, J. S.; Silva, A. F. B.; Caneiro, R. F.; Lopes, J. L. S.; Ramos, M. V.; Freitas, C. D. T., Synthetic antimicrobial peptides: From choice of the best sequences to action mechanisms. Biochimie 2020, 175, 132-145.
91. Dathe, M.; Wieprecht, T.; Nikolenko, H.; Handel, L.; Maloy, W. L.; MacDonald, D. L.; Beyermann, M.; Bienert, M., Hydrophobicity, hydrophobic
moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Letters 1997, 403 (2), 208-212.
92. Bolatchiev, A.; Baturin, V.; Shchetinin, E.; Bolatchieva, E., Novel Antimicrobial Peptides Designed Using a Recurrent Neural Network Reduce
Mortality in Experimental Sepsis. Antibiotics (Basel) 2022, 11 (3).
93. Grafskaia, E. N.; Pavlova, E. R.; Latsis, I. A.; Malakhova, M. V.; Ivchenkov, D. V.; Bashkirov, P. V.; Kot, E. F.; Mineev, K. S.; Arseniev, A. S.; Klinov, D. V.; Lazarev, V. N., Non-toxic antimicrobial peptide Hm-AMP2 from leech metagenome proteins identified by the gradient-boosting approach. Materials & Design 2022, 224, 111364.
94. Li, C.; Sutherland, D.; Hammond, S. A.; Yang, C.; Taho, F.; Bergman, L.; Houston, S.; Warren, R. L.; Wong, T.; Hoang, L. M. N.; Cameron, C.
E.; Helbing, C. C.; Birol, I., AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. BMC Genomics 2022, 23 (1), 77.
95. Ruiz Puentes, P.; Henao, M. C.; Cifuentes, J.; Muñoz-Camargo, C.; Reyes, L. H.; Cruz, J. C.; Arbeláez, P., Rational Discovery of Antimicrobial Peptides by Means of Artificial Intelligence. Membranes (Basel) 2022, 12 (7).
96. Szymczak, P.; Możejko, M.; Grzegorzek, T.; Bauer, M.; Neubauer, D.; Michalski, M.; Sroka, J.; Setny, P.; Kamysz, W.; Szczurek, E., HydrAMP: a deep generative model for antimicrobial peptide discovery. bioRxiv 2022, 2022.01.27.478054.
97. Yuan, B.; Lu, X.; Yang, M.; He, Q.; Cha, Z.; Fang, Y.; Yang, Y.; Xu, L.; Yan, J.; Lai, R.; Wang, A.; Yu, X.; Duan, Z., A designed antimicrobial peptide with potential ability against methicillin resistant Staphylococcus aureus. Frontiers in Microbiology 2022, 13.
98. Wang, Y.; Zhu, G.; Wang, W.; Zhang, Y.; Zhu, Y.; Wang, J.; Geng, M.; Lu, H.; Chen, Y.; Zhou, M.; Chen, J.; Zhang, F.; Yang, J.; Cheng, X.,
Rational design of HJH antimicrobial peptides to improve antimicrobial activity. Bioorganic & Medicinal Chemistry Letters 2023, 83, 129176.
99. Yao, Y.; Zhang, W.; Li, S.; Xie, H.; Zhang, Z.; Jia, B.; Huang, S.; Li, W.; Ma, L.; Gao, Y.; Song, J.; Wang, R., Development of Neuropeptide
Hemokinin-1 Analogues with Antimicrobial and Wound-Healing Activity. Journal of Medicinal Chemistry 2023, 66 (10), 6617-6630.
100. Theansungnoen, T.; Phosri, S.; Bumrungthai, S.; Daduang, J.; Klaynongsruang, S.; Daduang, S., Novel non-cytotoxic antimicrobial peptides
WSKK11 and WSRR11 with potent activity against Cutibacterium acnes. J Antimicrob Chemother 2022, 77 (4), 1012-1019.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2023-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明