博碩士論文 110223030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.22.240.53
姓名 連家緯(Jia-Wei Lian)  查詢紙本館藏   畢業系所 化學學系
論文名稱 有機金屬骨架衍生之氮摻雜碳修飾硫化錳硫化鋅複合材及硫化銅硫化鎳複合材作為鋰(鈉)離子電池負極材料之應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本論文分為兩部分,第一部分將硝酸錳作為金屬離子前驅物,1,3,5-苯三甲
酸作為有機配位基,加入添加劑聚乙烯吡咯烷酮,製備成有機金屬骨架前驅物
MnBTC,並探討最佳鍛燒硫化溫度,接著將硝酸錳和硝酸鋅作為金屬離子前驅
物,製備成雙金屬有機金屬骨架前驅物 Mn/ZnBTC,並經過 700 ℃鍛燒硫化得
到氮摻雜碳修飾硫化錳硫化鋅複合材(Mn,Zn)S/N-C,應用於鋰、鈉離子電池負極
材料,其中(Mn,Zn)S/N-C (1-1)具有最好的電化學表現,組裝鋰離子電池半電池
在電流密度 0.1 A/g 下循環 100 圈有 1003 mAh/g 的比容量,組裝成鈉離子電池
半電池在電流密度 0.05 A/g 下循環 100 圈有 288.6 mAh/g 的比容量,和正極材料
磷酸鐵鋰組成全電池的實際應用在 0.1 C 下充放電 100 圈有 40.6 mAh/g 的可逆
比容量且庫倫效率高達 95.7 %。
第二部分以第一部分的有機配位基為基礎,金屬離子前驅物使用硝酸銅和
硝酸鎳合成有機金屬骨架前驅物 Cu/NiBTC,經過 500 ℃鍛燒硫化後得到硫化銅
硫化鎳複合材,不同鎳加量的複合材作為鋰離子電池負極材料進行循環穩定性
測試可以發現複合材有鎳的情況下,相比於硫化銅複合材,雙金屬的複合材的比
容量、維持率和鋰離子擴散係數會提升,在半電池充放電測試中 Cu1.96S/Ni3S2-50
具有最好的循環穩定性,電流密度 1 A/g 下循環 250 圈有 167 mAh/g 的比容量,
而 0.1 A/g 下循環 100 圈有 385.5 mAh/g 的比容量。
摘要(英) Metal organic framework (MOFs) have been considered to be the ideal
precursor for metal oxides, metal sulfides, metal selenides or carbon materials which
can be used for anode of lithium and sodium ion batteries. In this work, use the metal
organic framework based on manganese ion, and get manganese sulfide MnS by
sulfurization, the best sulfurization temperature is 700 ℃. After finding the best
sulfurization temperatue, then synthesis manganese and zinc bimetallic metal organic
framework Mn/ZnBTC be the precursor and get the manganese and zinc sulfides
decorated with nitrogen-doped carbon by sulfurization named (Mn,Zn)S/N-C. Then
find the ratio of manganese and zinc which has the best electrochemical performance
for anode material. Finally, (Mn,Zn)S/N-C(1-1) exhibits the most great
electrochemical performance in half-cell lithium ion batteries, it shows specific
capacity of 1003 mAh/g after 100 cycles at a current density 0.1 A/g. And in half-cell
sodium ion battery, it demonstrates a specific capacitance of 266.8 mAh/g after 100
cycles at a current density of 0.05 A/g. In a full-cell configuration with lithium iron
phosphate, it exhibits a reversible capacity of 40.5 mAh/g and a coulombic efficiency
of approximately 95% after 100 cycles at 0.1 C.
The second part is based on the same ligand from the first part. Copper nitrate
and nickel nitrate are used as metal ion precursors to replace the manganese and zinc
ions and synthesize organic metal framework precursors Cu/NiBTC. After
sulfurization, copper sulfide and nickel sulfide composite materials are obtained. Then
test the relation of electrochemical performance and nickel amount. It is observed that
composites with nickel content, specific capacity of those composites can higher than
copper sulfide. Among them, Cu1.96S/Ni3S2-50 exhibits the best cyclic stability, with a
specific capacity of 385.5 mAh/g after 100 cycles at a current density 0.1 A/g. And
also exhibits the highest lithium ion diffusion coefficient.
關鍵字(中) ★ 有機金屬骨架
★ 鋰離子電池
★ 過渡金屬硫化物
關鍵字(英) ★ Metal Organic Framework
★ Lithium Ion Battery
★ Transition Metal Sulfide
論文目次 目錄
第一章 緒論 ................................................................................................................. 1
1-1 鋰離子電池 ......................................................................................................... 1
1-1-1 鋰離子電池簡介 ......................................................................................... 1
1-1-2 鋰離子電池正極材料 ................................................................................. 2
1-1-3 鋰離子電池負極材料 ................................................................................. 4
1-2 鈉離子電池 ......................................................................................................... 6
1-2-1 鈉離子電池簡介 ......................................................................................... 6
1-2-2 鈉離子電池正極材料 ................................................................................. 8
1-2-3 鈉離子電池負極材料 ............................................................................... 10
1-3 固態電解質界面 ............................................................................................... 12
1-3-1 固態電解質界面的形成 ........................................................................... 12
1-3-2 固態電解質界面的組成 ........................................................................... 13
1-4 過渡金屬硫化物 ............................................................................................... 13
1-4-1 過渡金屬硫化物製備方式 ....................................................................... 14
1-4-2 在鋰、鈉離子電池負極的應用 ............................................................... 17
1-4-3 雙金屬過渡金屬硫化物複合材應用於負極材料 ................................... 21
1-5 有機金屬骨架 ................................................................................................... 23
1-5-1 有機金屬骨架形成 ................................................................................... 23
1-5-2 有機金屬骨架結構控制 ........................................................................... 26
1-5-3 有機金屬骨架衍生物應用於負極材料 ................................................... 30
1-6 研究動機 ........................................................................................................... 38
第二章 實驗步驟與儀器 ........................................................................................... 39
2-1 實驗藥品 ........................................................................................................... 39
2-2 實驗步驟 ........................................................................................................... 40
2-2-1 錳鋅有機金屬骨架合成(Mn/Zn-BTC) .................................................... 41
2-2-2 製備有機金屬骨架衍生之複合材(Mn,Zn)S/N-C ................................... 41
2-2-3 有機金屬骨架合成(Cu/Ni-BTC) .............................................................. 42
2-2-4 製備有機金屬骨架衍生之複合材 Cu1.96S/Ni3S2 ..................................... 43
2-3 電極製備及電化學測試方法 ........................................................................... 44
2-3-1 負極極片製作 ........................................................................................... 44
2-3-2 正極極片製作 ........................................................................................... 44
2-3-3 硬幣型 2032 型電池組裝 ......................................................................... 44
2-3-4 定(變)電流充放電循環穩定性測試 ....................................................... 45
2-3-5 循環伏安法(CV) ....................................................................................... 46
2-3-6 電化學阻抗分析(EIS) ............................................................................... 46
2-4 實驗鑑定儀器 ................................................................................................... 47
2-5 材料鑑定儀器之原理 ....................................................................................... 48
2-5-1 X 射線粉末繞射(XRD) ............................................................................. 48
2-5-2 掃描式電子顯微鏡(SEM) ........................................................................ 49
2-5-3 穿透式電子顯微鏡(TEM) ........................................................................ 50
2-5-4 熱重分析儀(TGA) ..................................................................................... 50
2-5-5 感應耦合電漿質譜儀(ICP-MS) ............................................................... 51
2-5-6 X 射線光電子能譜儀(XPS) ...................................................................... 52
2-5-7 電化學阻抗譜(EIS) ................................................................................... 56
2-5-8 循環伏安法(CV) ....................................................................................... 57
第三章 結果與討論 ................................................................................................... 60
3-1 材料鑑定 ........................................................................................................... 60
3-1-1 大角度 X 光繞射分析(PXRD) ................................................................. 60
3-1-2 掃描式電子顯微鏡(SEM)形貌鑑定 ........................................................ 62
3-1-3 穿透式電子顯微鏡(TEM)結果分析 ........................................................ 69
3-1-4 氮氣吸脫附結果分析(BET) ..................................................................... 79
3-1-5 熱重分析(TGA) ......................................................................................... 86
3-1-6 感應電漿耦合質譜(ICP-MS)分析及元素分析(EA) ............................... 89
3-1-7 X 光電子能譜(XPS)分析 .......................................................................... 90
3-2 材料於鋰離子電池半電池之電化學測試 ...................................................... 96
3-2-1 循環伏安曲線及充放電曲線之分析 ....................................................... 96
3-2-2 循環穩定性及倍率性測試 ....................................................................... 99
3-2-3 交流阻抗分析 ......................................................................................... 105
3-2-4 電容貢獻度計算 ..................................................................................... 108
3-3 材料於鈉離子電池的電化學表現................................................................. 112
3-3-1 循環伏安曲線及充放電曲線之分析 ..................................................... 112
3-3-2 循環穩定性及倍率性測試 ..................................................................... 113
3-3-3 交流阻抗分析 ......................................................................................... 115
3-3-4 電容貢獻度計算 ..................................................................................... 116
3-4 實際應用及相關文獻比較 ............................................................................. 120
第四章 結果與討論 ................................................................................................. 123
4-1 材料鑑定 ......................................................................................................... 123
4-1-1 大角度 X 光繞射分析(PXRD) ............................................................... 123
4-1-2 掃描式電子顯微鏡(SEM)結果分析 ...................................................... 124
4-1-3 穿透式電子顯微鏡(TEM)結果分析 ...................................................... 128
4-1-4 氮氣吸脫附結果分析(BET) ................................................................... 135
4-1-5 熱重分析(TGA) ....................................................................................... 139
4-1-6 感應電漿耦合質譜(ICP-MS)分析 ......................................................... 140
4-1-7 X 光電子能譜(XPS)分析 ........................................................................ 140
4-2 材料於鋰離子電池半電池之電化學測試 .................................................... 144
4-2-1 循環伏安曲線及充放電曲線之分析 ..................................................... 144
4-2-2 循環穩定性及倍率性測試 ..................................................................... 146
4-2-3 交流阻抗分析 ......................................................................................... 149
第五章 結論 ............................................................................................................. 152
第六章 參考文獻 ..................................................................................................... 154
參考文獻 1. Shao, Y.; El-Kady, M. F.; Sun, J., Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn,
B.; Kaner, R. B. Design and Mechanisms of Asymmetric Supercapacitors.
Chemical Reviews 2018, 118 (18), 9233-9280.
2. Arshad, F.; Li, L.; Amin, K.; Fan, E.; Manurkar, N.; Ahmad, A.; Yang, J.; Wu, F.;
Chen, R. A Comprehensive Review of the Advancement in Recycling the Anode
and Electrolyte from Spent Lithium Ion Batteries. ACS Sustainable Chemistry &
Engineering 2020, 8 (36), 13527-13554.
3. Prof. Choi, N. S.; Dr. Chen, Z.; Dr. Freunberger, S. A.; Dr. Ji, X.; Prof. Sun, Y. K.;
Prof. Amine, K.; Prof. Yushin, G.; Prof. Nazar, L. F.; Prof. Cho, J.; Prof. Bruce, P.
G. Challenges facing lithium batteries and electrical double‐layer capacitors.
Angewandte Chemie International Edition 2012, 51 (40), 9994-10024.
4. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage.
Advanced materials 2010, 22 (8), E28-E62.
5. Amine, K.; Liu, J.; Kang, S.; Belharouak, I.; Hyung, Y.; Vissers, D.; Henriksen,
G. Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power
applications. Journal of power sources 2004, 129 (1), 14-19.
6. Chan, H. W. ; Duh. J. G. ; Sheu, H. S. In Situ Synchrotron X-Ray Diffraction
Investigations of LiCuxMn2−xO4 Surface Coated LiMn2O4 Spinel Cathode Material
during Charge with Various Rates. Journal of the Electrochemical Society 2006,
153 (8), A1533.
7. Goodenough, J. B. Cathode materials: A personal perspective. Journal of Power
Sources 2007, 174 (2), 996-1000.
8. Sun, C. S.; Zhou, Z.; Xu, Z. G.; Wang, D. G.; Wei, J. P.; Bian, X. K.; Yan, J.
Improved high-rate charge/discharge performances of LiFePO4/C via V-doping.
Journal of Power Sources 2009, 193 (2), 841-845.
9. Pan, D.; Wang, S.; Zhao, B.; Wu, M.; Zhang, H.; Wang, Y.; Jiao, Z. Li Storage
Properties of Disordered Graphene Nanosheets. Chemistry of Materials 2009, 21
(14), 3136-3142.
10. Chen, Y.; Chen, X.; Zhang, Y. A Comprehensive Review on Metal-Oxide
Nanocomposites for High-Performance Lithium-Ion Battery Anodes. Energy &
Fuels 2021, 35 (8), 6420-6442.
11. Han, B.; Kim, S.-J.; Hwang, B.-M.; Kim, S.-B.; Park, K.-W. Single-crystalline
rutile TiO2 nanowires for improved lithium ion intercalation properties. Journal of
power sources 2013, 222, 225-229.
12. Park, J.-S.; Cho, J. S.; Kang, Y. C. Scalable synthesis of NiMoO4 microspheres
with numerous empty nanovoids as an advanced anode material for Li-ion batteries.
Journal of Power Sources 2018, 379, 278-287.
13. Huang, G.; Guo, X.; Cao, X.; Tian, Q.; Sun, H. 3D network single-phase Ni0. 9Zn0.
1O as anode materials for lithium-ion batteries. Nano Energy 2016, 28, 338-345.
14. Carmichael, R. S. Practical handbook of physical properties of rocks and minerals.
CRC press, 1988.
15. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on
Sodium-Ion Batteries. Chemical Reviews 2014, 114 (23), 11636-11682.
16. Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties
of the layered oxides. Physica B+ c, 1980, 99 (1-4), 81-85.
17. Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.;
Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-
abundant elements for rechargeable Na batteries. Nature materials 2012, 11 (6),
512-517.
18. Goodenough, J. B.; Hong, H. Y-P.; Kafalas, J. A. Fast Na+-ion transport in
skeleton structures. Materials Research Bulletin 1976, 11 (2), 203-220.
19. Jian, Z.; Zhao, L.; Pan, H.; Hu, Y.-S. Li, H.; Chen, W.; Chen, L. Carbon coated
Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochemistry
Communications 2012, 14 (1), 86-89.
20. Senguttuvan, P.; Rousse, G.; Arroyo y de Dompablo, M. E.; Vezin, H.; Tarascon,
J.-M.; Palacín, M. R. Low-Potential Sodium Insertion in a NASICON-Type
Structure through the Ti(III)/Ti(II) Redox Couple. Journal of the American
Chemical Society 2013, 135 (10), 3897-3903.
21. Prof. Yabuuchi, M.; Matsuura, Y.; Ishikawa, T.; Dr. Kuze, S.; Dr. Son, J.-Y.; Dr.
Cui, Y.-T.; Dr. Oji, H.; Prof. Komaba, S. Phosphorus electrodes in sodium cells:
small volume expansion by sodiation and the surface‐stabilization mechanism in
aprotic solvent. ChemElectroChem 2014, 1 (3), 580-589.
22. Lu, P.; Li, C.; Schneider, E. W.; Harris, S. J. Chemistry, Impedance, and
Morphology Evolution in Solid Electrolyte Interphase Films during Formation in
Lithium Ion Batteries. The Journal of Physical Chemistry C 2014, 118 (2), 896-
903.
23. Wang, F.; Wang, B.; Li, J.; Wang, B.; Zhou, Y.; Wang, D.; Liu, H.; Dou, S.
Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-
Generation Lithium Ion Battery. ACS Nano 2021, 15 (2), 2197-2218.
24. Peng, Z.; Zhao, N.; Zhang, Z.; Wan, H.; Lin, H.; Liu, M.; Shen, C.; He, H.; Guo,
X.; Zhang, J.-G.; Wang, D. Stabilizing Li/electrolyte interface with a
transplantable protective layer based on nanoscale LiF domains. Nano Energy
2017, 39, 662-672.
25. Zhang, S.; Yang, G.; Liu, S.; Li, X.; Wang, X.; Wang, Z.; Chen, L. Understanding
the dropping of lithium plating potential in carbonate electrolyte. Nano Energy
2020, 70, 104486.
26. Shan, X.; Zhong, Y.; Zhang, L.; Zhang, Y.; Xia, X.; Wang, X.; Tu, J. A Brief
Review on Solid Electrolyte Interphase Composition Characterization Technology
for Lithium Metal Batteries: Challenges and Perspectives. The Journal of Physical
Chemistry C 2021, 125 (35), 19060-19080.
27. Xiao, Y.; Lee, S. H.; Sun, Y.-K. The application of metal sulfides in sodium ion
batteries. Advanced energy materials 2017, 7 (3), 1601329.
28. Hu, Z.; Zhu, Z.; Cheng, F.; Zhang, K.; Wang, J.; Chen, C.; Chen, J. Pyrite FeS2 for
high-rate and long-life rechargeable sodium batteries. Energy & Environmental
Science 2015, 8 (4), 1309-1316.
29. Xie, X.; Makaryan, T.; Zhao, M.; Van Aken, K. L.; Gogotsi, Y.; Wang, G. MoS2
nanosheets vertically aligned on carbon paper: a freestanding electrode for highly
reversible sodium‐ion batteries. Advanced energy materials 2016, 6 (5), 1502161.
30. Li, X.; Wang, C. Engineering nanostructured anodes via electrostatic spray
deposition for high performance lithium ion battery application. Journal of
Materials Chemistry A 2013, 1 (2), 165-182.
31. Zhu, C.; Kopold, P.; Li, W.; van Aken, P. A.; Maier, J.; Yu, Y. A general strategy
to fabricate carbon‐coated 3D porous interconnected metal sulfides: case study of
SnS/C nanocomposite for high‐performance lithium and sodium ion batteries.
Advanced Science 2015, 2 (12), 1500200.
32. Qin, W.; Li, D.; Zhang, X.; Yan, D.; Hu, B.; Pan, L. ZnS nanoparticles embedded
in reduced graphene oxide as high performance anode material of sodium-ion
batteries. Electrochimica Acta 2016, 191, 435-443.
33. Zhang, Z.; Huang, Y.; Gao, X.; Xu, Z.; Wang, X. Rational Design of Hierarchically
Structured CoS2@NCNTs from Metal–Organic Frameworks for Efficient
Lithium/Sodium Storage Performance. ACS Applied Energy Materials 2020, 3 (7),
6205-6214
34. Geng, H.; Su, H.; Lin, C.; Ma, Y.; Zhang, Y.; Chen, D.; Tan, H.; Rui, X.; Fang, Y.;
Li, C. C. Double-Layer N,S-Codoped Carbon Protection of MnS Nanoparticles
Enabling Ultralong-Life and High-Rate Lithium Ion Storage. ACS Applied Energy
Materials 2018, 1 (9), 4867-4873.
35. Jing, M.; Chen, Z.; Li, Z.; Li, F.; Chen, M.; Zhou, M.; He, B.; Chen, L.; Hou, Z.;
Chen, X. Facile Synthesis of ZnS/N,S Co-doped Carbon Composite from Zinc
Metal Complex for High-Performance Sodium-Ion Batteries. ACS Applied
Materials & Interfaces 2018, 10 (1), 704-712.
36. Sun, S.; Wang, S.; Deng, D.; Yang, Z. Formation of hierarchically polyhedral Cu7
S4 cages from Cu2O templates and their structure-dependent photocatalytic
performances. New Journal of Chemistry 2013, 37 (11), 3679-3684.
37. Vadivazhagan, M.; Shakkeel N. K., Nallathamby, K. Demonstration of Biocarbon-
Added NiS Porous Nanospheres as a Potential Anode for Lithium-Ion Batteries.
Energy & Fuels 2021, 35 (10), 8991-9000.
38. Sun, R.; Wei, Q.; Li, Q.; Luo, W.; An, Q.; Sheng, J.; Wang, D.; Chen, W.; Mai, L.
Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for
Sodium Ion Battery. ACS Applied Materials & Interfaces 2015, 7 (37), 20902-
20908.
39. Xu, L.; Hu, Y.; Zhang, H.; Jiang, H.; Li, C. Confined Synthesis of FeS2
Nanoparticles Encapsulated in Carbon Nanotube Hybrids for Ultrastable Lithium-
Ion Batteries. ACS Sustainable Chemistry & Engineering 2016, 4 (8), 4251-4255.
40. Hu, P.; Jia, Z.; Wang, Y.; Zhou, Q.; Liu, N.; Li, F.; Wang, J. Interface Engineering
of Hierarchical MoS2/ZnS/C Heterostructures as Anode Materials for Highly
Improved Lithium Storage Capability. ACS Applied Energy Materials 2020, 3 (8),
7856-7864.
41. Chen, J.; Li, S.; Kumar, V.; Lee, P. S. Carbon coated bimetallic sulfide hollow
nanocubes as advanced sodium ion battery anode. Advanced Energy Materials
2017, 7 (19), 1700180.
42. Li, J.; Liu, B.; Li, M.; Zhou, Q.; Chen, Q.; Guo, C.; Zhang, L. Engineering Zn0.
33Co0. 67S hollow microspheres with enhanced electrochemical performance for
lithium and sodium ion batteries. European Journal of Inorganic Chemistry 2018,
2018 (26), 3036-3040.
43. Man, X.; Liang, P.; Shu, H.; Zhang, L.; Wang, D.; Chao, D.; Liu, Z.; Du, X.; Wan,
H.; Wang, H. Interface Synergistic Effect from Layered Metal Sulfides of
MoS2/SnS2 van der Waals Heterojunction with Enhanced Li-Ion Storage
Performance. The Journal of Physical Chemistry C 2018, 122 (43), 24600-24608.
44. Chen, Y.; Liu, H.; Guo, X.; Zhu, S.; Zhao, Y.; Iikubo, S.; Ma, T. Bimetallic Sulfide
SnS2/FeS2 Nanosheets as High-Performance Anode Materials for Sodium-Ion
Batteries. ACS Applied Materials & Interfaces 2021, 13 (33), 39248-39256.
45. Taylor, K. M. L.; Rieter, W. J.; Lin, W. Manganese-Based Nanoscale
Metal−Organic Frameworks for Magnetic Resonance Imaging. Journal of the
American Chemical Society 2008, 130 (44), 14358-14359.
46. Shustova, N. B.; McCarthy, B. D.; Dincă, M. Turn-On Fluorescence in
Tetraphenylethylene-Based Metal–Organic Frameworks: An Alternative to
Aggregation-Induced Emission. Journal of the American Chemical Society 2011,
133 (50), 20126-20129.
47. Gonen, S.; Lori, O.; Cohen-Taguri, G.; Elbaz, L. Metal organic frameworks as a
catalyst for oxygen reduction: an unexpected outcome of a highly active Mn-MOF-
based catalyst incorporated in activated carbon. Nanoscale 2018, 10 (20), 9634-
9641.
48. Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou,
W. Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–
Organic Framework UiO-66 and Their Important Effects on Gas Adsorption.
Journal of the American Chemical Society 2013, 135 (28), 10525-10532.
49. Couck, S.; Denayer, J. F. M.; Baron, G. V.; Rémy, T.; Gascon, J.; Kapteijn, F. An
Amine-Functionalized MIL-53 Metal−Organic Framework with Large Separation
Power for CO2 and CH4. Journal of the American Chemical Society 2009, 131 (18),
6326-6327.
50. Li, Z.; Zhang, L. Y.; Zhang, L.; Huang, J.; Liu, H. ZIF-67-derived CoSe/NC
composites as anode materials for lithium-ion batteries. Nanoscale Research
Letters 2019, 14, 1-11.
51. Li, Y. Su, J.; Zhao, Y.; Feng, L.; Gao, L.; Xu, X.; Yin, Y.; Liu, Y.; Xiao, P.; Yuan,
L.; Qin, J.-S. Wang, Y.; Yuan, S.; Zheng, H.; Zuo, J.-L. Dynamic Bond-Directed
Synthesis of Stable Mesoporous Metal–Organic Frameworks under Room
Temperature. Journal of the American Chemical Society 2023, 145 (18), 10227-
10235.
52. Wang, T.; Jin, R.; Wu, X.; Zheng, J.; Li, X.; Ostrikov, K. A highly efficient Ni–
Mo bimetallic hydrogen evolution catalyst derived from a molybdate incorporated
Ni-MOF. Journal of Materials Chemistry A 2018, 6 (19), 9228-9235.
53. Liang, W.; Babarao, R.; D’Alessandro, D. M. Microwave-Assisted Solvothermal
Synthesis and Optical Properties of Tagged MIL-140A Metal–Organic
Frameworks. Inorganic Chemistry 2013, 52 (22), 12878-12880.
54. Zhang, L.; Liu, H.; Shi, W.; Cheng, P. Synthesis strategies and potential
applications of metal-organic frameworks for electrode materials for rechargeable
lithium ion batteries. Coordination Chemistry Reviews 2019, 388, 293-309.
55. Yang, H. M.; Song, X. L.; Yang, T. L.; Liang, Z. H.; Fana, C. M.; Hao, X. G.
Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid
system and their electrocatalytic application to the hydrogen evolution reaction.
RSC Advances 2014, 4 (30), 15720-15726.
56. Hwang, J.; Yan, R.; Oschatz, M.; Schmidt, B. V. K. J. Solvent mediated
morphology control of zinc MOFs as carbon templates for application in
supercapacitors. Journal of Materials Chemistry A 2018, 6 (46), 23521-23530.
57. Zhang, F.; Wei, Y.; Wu, X.; Jiang, H.; Wang, W.; Li, H. Hollow Zeolitic
Imidazolate Framework Nanospheres as Highly Efficient Cooperative Catalysts
for [3+3] Cycloaddition Reactions. Journal of the American Chemical Society
2014, 136 (40), 13963-13966.
58. Koo, J.; Hwang, I.-C.; Yu, X.; Saha, S.; Kim, Y.; Kim, K. Hollowing out MOFs:
hierarchical micro-and mesoporous MOFs with tailorable porosity via selective
acid etching. Chemical Science 2017, 8 (10), 6799-6803.
59. Cai, G.; Zhang, W.; Jiao, L.; Yu, S.-H.; Jiang, H.-L. Template-directed growth of
well-aligned MOF arrays and derived self-supporting electrodes for water splitting.
Chem 2017, 2 (6), 791-802.
60. Huang, X.; Yan, S.; Deng, D.; Zhang, L.; Liu, R.; Lv, Y. Novel Strategy for
Engineering the Metal-Oxide@MOF Core@Shell Architecture and Its
Applications in Cataluminescence Sensing. ACS Applied Materials & Interfaces
2021, 13 (2), 3471-3480.
61. Wang, K.; Wan, Y.; Zhang, Y.; Liu, F.; Shi, J.; Liu, S.; Xie, X.; Cao, G.; Pan, A.
Bimetallic organic framework derivation of three-dimensional and heterogeneous
metal selenides/carbon composites as advanced anodes for lithium-ion batteries.
Nanoscale 2020, 12 (23), 12623-12631.
62. Wang, Z.; Yan, T.; Fang, J.; Shi, L.; Zhang, D. Nitrogen-doped porous carbon
derived from a bimetallic metal–organic framework as highly efficient electrodes
for flow-through deionization capacitors. Journal of Materials Chemistry A 2016,
4 (28), 10858-10868.
63. Yang, F.; Gao, H.; Chen, J.; Guo, Z. Phosphorus‐based materials as the anode for
sodium‐ion batteries. Small Methods 2017, 1 (11), 1700216.
64. Wang, L.; Han, Z.; Zhao, Q.; Yao, X.; Zhu, Y.; Ma, X.; Wu, S.; Cao, C.
Engineering yolk–shell P-doped NiS2/C spheres via a MOF-template for high-
performance sodium-ion batteries. Journal of materials chemistry A 2020, 8 (17),
8612-8619.
65. Zhao, W.; Ma, X. Hierarchical Scalelike Yolk–Shell Construction Assembled via
Ultrathin MoSe2 Nanoplates Incorporated into Metal–Organic Frameworks
Derived Porous Carbon Spheres as Highly Durable Anode for Enhanced Sodium
Storage. ACS Sustainable Chemistry & Engineering 2020, 8 (51), 19040-19050.
66. Zhong, M.; Yang, D.; Xie, C.; Zhang, Z.; Zhou, Z.; Bu, X.-H. Yolk–Shell MnO@
ZnMn2O4/N–C Nanorods Derived from α‐MnO2/ZIF‐8 as Anode Materials for
Lithium Ion Batteries. Small 2016, 12 (40), 5564-5571.
67. Cao, D.; Kang, W.; Wang, W.; Sun, K.; Wang, Y.; Ma, P.; Sun, D. Okra‐Like
Fe7S8/C@ ZnS/N‐C@ C with core–double‐shelled structures as robust and high‐
rate sodium anode. Small 2020, 16 (35), 1907641.
68. Liang, Z.; Zhang, C.; Yuan, H.; Zhang, W.; Zheng, H.; Cao, R. PVP-assisted
transformation of a metal–organic framework into Co-embedded N-enriched
meso/microporous carbon materials as bifunctional electrocatalysts. Chemical
Communications 2018, 54 (54), 7519-7522.
69. Vela, N. P.; Olson, L. K.; Caruso, J. A. Elemental speciation with plasma mass
spectrometry. Analytical Chemistry 1993, 65 (13), 585A-597A.
70. Greczynski, G.; Hultman, L. X-ray photoelectron spectroscopy: towards reliable
binding energy referencing. Progress in Materials Science 2020, 107, 100591.
71. Günter, F. J.; Habedank, J. B.; Schreiner, D.; Neuwirth, T.; Gilles, R.; Reinhart, G.
Introduction to electrochemical impedance spectroscopy as a measurement
method for the wetting degree of lithium-ion cells. Journal of The Electrochemical
Society 2018, 165 (14), A3249.
72. Andre, D.; Meiler, M.; Steiner, K.; Wimmer, C.; Soczka-Guth, T.; Sauer, D. U.
Characterization of high-power lithium-ion batteries by electrochemical
impedance spectroscopy. I. Experimental investigation. Journal of Power Sources
2011, 196 (12), 5334-5341.
73. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.;
Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of
Chemical Education 2018, 95 (2), 197-206.
74. Mathis, T. S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy
storage data reporting in perspective—guidelines for interpreting the performance
of electrochemical energy storage systems. Advanced Energy Materials 2019, 9
(39), 1902007.
75. Liu, J.; Wang, J.; Xu, C.; Jiang, H.; Li, C.; Zhang, L.; Lin, J.; Shen, Z. X. Advanced
energy storage devices: basic principles, analytical methods, and rational materials
design. Advanced science 2018, 5 (1), 1700322.
76. Cao, J.; Yang, J.; Zhang, Y.; Yang, L.; Wang, Y.; We, M.; Liu, Y.; Gao, M.; Liu,
X.; Xie, Z. Optimized doping concentration of manganese in zinc sulfide
nanoparticles for yellow-orange light emission. Journal of Alloys and Compounds
2009, 486 (1-2), 890-894.
77. Wang, X.-F.; Xu, J.-J.; Chen, H.-Y. A New Electrochemiluminescence Emission
of Mn2+-Doped ZnS Nanocrystals in Aqueous Solution. The Journal of Physical
Chemistry C 2008, 112 (45), 17581-17585.
78. Powell, A. E.; Hodges, J. M.; Schaak, R. E. Preserving Both Anion and Cation
Sublattice Features during a Nanocrystal Cation-Exchange Reaction: Synthesis of
Metastable Wurtzite-Type CoS and MnS. Journal of the American Chemical
Society 2016, 138 (2), 471-474.
79. Li, Y.; Li, X.; Yang, C.; Li, Y. Ligand-Controlling Synthesis and Ordered
Assembly of ZnS Nanorods and Nanodots. The Journal of Physical Chemistry B
2004, 108 (41), 16002-16011.
80. Chai, L.; Du, J.; Xiong, S.; Li, H.; Zhu, Y.; Qian, Y. Synthesis of Wurtzite ZnS
Nanowire Bundles Using a Solvothermal Technique. The Journal of Physical
Chemistry C 2007, 111 (34), 12658-12662.
81. Zhang, Z.; Wang, J.; Yuan, H.; Gao, Y.; Liu, D.; Song, L.; Xiang, Y.; Zhao, X.;
Liu, L.; Luo, S.; Dou, X.; Mou, S.; Zhou, W.; Xie, S. Low-Temperature Growth
and Photoluminescence Property of ZnS Nanoribbons. The Journal of Physical
Chemistry B 2005, 109 (39), 18352-18355.
82. Zhou, G.-T.; Wang, X.; Yu, J. C. A Low-Temperature and Mild Solvothermal
Route to the Synthesis of Wurtzite-Type ZnS With Single-Crystalline Nanoplate-
like Morphology. Crystal Growth & Design 2005, 5 (5), 1761-1765.
83. Chen, X.; Xu, H.; Xu, N.; Zhao, F.; Lin, W.; Lin, G.; Fu, Y.; Huang, Z.; Wang, H.;
Wu, M. Kinetically Controlled Synthesis of Wurtzite ZnS Nanorods through Mild
Thermolysis of a Covalent Organic−Inorganic Network. Inorganic Chemistry
2003, 42 (9), 3100-3106.
84. Fenton, J. L.; Steimle, B. C.; Schaak, R. E. Structure-Selective Synthesis of
Wurtzite and Zincblende ZnS, CdS, and CuInS2 Using Nanoparticle Cation
Exchange Reactions, Inorganic Chemistry 2019, 58 (1), 672-678.
85. Gao, X.; Wang, B.; Zhang, Y.; Liu, H.; Liu, H.; Wu, H.; Dou, S. Graphene-scroll-
sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam
as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy
Storage Materials 2019, 16, 46-55.
86. Lee, S. M.; Prof. Lee, J.-K.; Prof. Kang, Y. C. Electrochemical Properties of
Hollow‐Structured MnS–Carbon Nanocomposite Powders Prepared by a One‐Pot
Spray Pyrolysis Process. Chemistry–An Asian Journal 2014, 9 (2), 590-595.
87. Anyama, C. A.; Ita, B. I. Ayi, A. A.; Louis, H.; Okon, E. E. D.; Ogar, J. O.;
Oseghale, C. O. Experimental and Density Functional Theory Studies on a Zinc(II)
Coordination Polymer Constructed with 1,3,5-Benzenetricarboxylic Acid and the
Derived Nanocomposites from Activated Carbon. ACS Omega 2021, 6 (43),
28967-28982.
88. Dengo, N.; Vittadini, A.; Natile, M. M.; Gross, S. In-Depth Study of ZnS
Nanoparticle Surface Properties with a Combined Experimental and Theoretical
Approach. The Journal of Physical Chemistry C 2020, 124 (14), 7777-7789.
89. Chen, F.; Deng, C.; Yang, C.; Li, Y.; Dong, Y.; Su, Y.; Xu, S. Eco-synthesized
bimetallic sulfide nanoparticles within coral-like N, S-doped carbon scaffolds for
lithium-/sodium-ion anode nanomaterials. Applied Physics A 2022, 128, 1-10.
90. Zhou, Y.; Zhang, M.; Wang, Q.; Yang, J.; Luo, X.; Li, Y.; Du, R.; Yan, X.; Sun,
X.; Dong, C.; Zhang, X.; Jiang, F. Pseudocapacitance boosted N-doped carbon
coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium
storage. Nano Research 2020, 13, 691-700.
91. Li, H.; Tang, M.; Wu, Y.; Chen, Y.; Zhu, S.; Wang, B.; Jiang, C.; Wang, E.; Wang,
C. Large π-Conjugated Porous Frameworks as Cathodes for Sodium-Ion Batteries.
The Journal of Physical Chemistry Letters 2018, 9 (12), 3205-3211.
92. Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Effect of Graphene Oxide on the
Properties of Its Composite with Polyaniline. ACS Applied Materials & Interfaces
2010, 2 (3), 821-828.
93. Wang, R.; Li, B.; Lai, L.; Hou, M.; Gao, J.; Wu, R. 3D urchin-like architectures
assembled by MnS nanorods encapsulated in N-doped carbon tubes for superior
lithium storage capability. Chemical Engineering Journal 2019, 355, 752-759.
94. Zhang, .; He, X.; Yin, S.; Cai, W.; Wang, Q.; Wu, H.; Wu, K.; Zhang, Y. Rational
Design of Space-Confined Mn-Based Heterostructures with Synergistic Interfacial
Charge Transport and Structural Integrity for Lithium Storage. Inorganic
Chemistry 2022, 61 (21), 8366-8378.
95. Wang, K.; Zhao, K.; Wang, Y.; Li, H.; Jiang, H.; Chen, L. N, S co-doped carbon
confined MnO/MnS heterostructures derived from a one-step pyrolysis of Mn-
methionine frameworks for advanced lithium storage. Journal of Alloys and
Compounds 2021, 860, 158451.
96. Ma, Y.; Ma, Y.; Diemant, T.; Cao, K.; Kaiser, U.; Behm, R. J.; Varzi, A.; Passerini,
S. Embedding heterostructured α‐MnS/MnO nanoparticles in S‐doped
carbonaceous porous framework as high‐performance anode for lithium‐ion
batteries. ChemElectroChem 2021, 8 (5), 918-927.
97. Ma, Y.; Ma, Y.; Kim, G.-T.; Diemant, T.; Behm, R. J.; Geiger, D.; Kaiser, U.;
Varzi, A.; Passerini, S. Superior lithium storage capacity of α‐MnS nanoparticles
embedded in S‐doped carbonaceous mesoporous frameworks. Advanced Energy
Materials 2019, 9 (43), 1902077.
98. Yao, W.; Zheng, W.; Xu, J.; Tian, C.; Han, K.; Sun, W.; Xiao, S. ZnS-SnS@NC
Heterostructure as Robust Lithiophilicity and Sulfiphilicity Mediator toward High-
Rate and Long-Life Lithium–Sulfur Batteries. ACS Nano 2021, 15 (4), 7114-7130.
99. Malekzadeh, M.; Rohani, P.; Liu, Y.; Raszewski, A.; Ghanei, F.; Swihart, M. T.
Laser pyrolysis synthesis of zinc-containing nanomaterials using low-cost
ultrasonic spray delivery of precursors. Powder Technology 2020, 376, 104-112.
100. Hu, W.; Dong, F.; Liu, M.; Yang, D.; Luo, N.; Chen, C. Photocatalytic
reduction of Cr (VI) using a wurtzite/natural sphalerite heterostructure: Synergistic
effects of exposed active facets, vacancies and a heterophase junction. Applied
Surface Science 2021, 550, 149267.
101. Hao, X.; Wang, Y.; Zhou, J.; Cui, Z.; Wang, Y.; Zou, Z. Zinc vacancy-
promoted photocatalytic activity and photostability of ZnS for efficient visible-
light-driven hydrogen evolution. Applied Catalysis B: Environmental 2018, 221,
302-311.
102. Camacho, R. A. P.; Wu, A.-M.; Jin, X.-Z.; Dong, X.-F.; Li, X.-N.; Huang, H.
Effective carbon constraint of MnS nanoparticles as high-performance anode of
lithium-ion batteries. Journal of Power Sources 2019, 437, 226931.
103. Mao, M.; Jiang, L.; Wu, L.; Zhang, M.; Wang, T. The structure control of
ZnS/graphene composites and their excellent properties for lithium-ion batteries.
Journal of Materials Chemistry A, 2015, 3 (25), 13384-13389.
104. Sun, Z.; Liu, Y.; Wu, D.; Tan, K.; Hou, L.; Yuan, C. Construction of a multi-
dimensional flexible MnS based paper electrode with ultra-stable and high-rate
capability towards efficient sodium storage. Nanoscale 2020, 12 (6), 4119-4127.
105. Li, J.; Wang, L.; Li, L.; Lv, C.; Zatovsky, I. V.; Han, W. Metal Sulfides
@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via
a General Metal–Aspergillus niger Bioleaching Strategy. ACS Applied Materials
& Interfaces 2019, 11 (8), 8072-8080.
106. Liu, Q.; Zhang, S.-J.; Xiang, C.-C.; Luo, C.-X.; Zhang, P.-F.; Shi, C.-G.; Zhou,
Y.; Li, J.-T.; Huang, L.; Sun, S.-G. Cubic MnS–FeS2 Composites Derived from a
Prussian Blue Analogue as Anode Materials for Sodium-Ion Batteries with Long-
Term Cycle Stability. ACS Applied Materials & Interfaces 2020, 12 (39), 43624-
43633.
107. Yang, F.; Wang, S.; Guan, J.; Shao, L.; Shi, X.; Cai, J.; Sun, Z. Hierarchical
MoS2–NiS nanosheet-based nanotubes@ N-doped carbon coupled with ether-
based electrolytes towards high-performance Na-ion batteries. Journal of
Materials Chemistry A 2021, 9 (47), 27072-27083.
108. Du, W.; Liu, J.; Zeb, A.; Lin, X. Regulating the Electronic Configuration of
Spinel Zinc Manganate Derived from Metal–Organic Frameworks: Controlled
Synthesis and Application in Anode Materials for Lithium-Ion Batteries. ACS
Applied Materials & Interfaces 2022, 14 (42), 48321-48321.
109. Liao, W.-H.; Hu, Q.-Q.; Cheng, M.; Wu, X.-H.; Zhanbd, G.-H.; Yan, R.-B.;
Li, J.-R.; Huang, X.-Y. Preparation of ZnS@ N-doped-carbon composites via a
ZnS-amine precursor vacuum pyrolysis route. RSC advances 2021, 11 (53),
33344-33353.
110. Zhou, J.; Tan, X.; Chen, H.; Wang, Y.; Li, Z.; Zhang, W.; Guo, F.; Chen, Y.;
Xu, Y.; Zhang, H. Biphasic Fe7S8@ MnS heterostructure embedded in sulfur-
doped carbon matrix as anode for Li-ion batteries. Journal of Alloys and
Compounds 2021, 886, 161185.
111. Xing, S.; Yang, J.; Muska, M.; Li, H.; Yang, Q. Rock-Salt MnS0.5Se0.5
Nanocubes Assembled on N-Doped Graphene Forming van der Waals
Heterostructured Hybrids as High-Performance Anode for Lithium- and Sodium-
Ion Batteries. ACS Applied Materials & Interfaces 2021, 13 (19), 22608-22620.
112. Duan, J.; Wang, G.; Li, H.; Wei, D.; Wen, F.; Zhang, G.; Liu, P.; Li, L.; Zhang,
W.-B.; Chen, Z. Bimetal‐organic Framework‐derived Co9S8/ZnS@ NC
Heterostructures for Superior Lithium‐ion Storage. Chemistry–An Asian Journal
2020, 15 (10), 1613-1620.
113. Cheng, W.; Di, H.; Shi, Z.; Zhang, D. CHENG, Wei, Synthesis of
ZnS/CoS/CoS2@ N-doped carbon nanoparticles derived from metal-organic
frameworks via spray pyrolysis as anode for lithium-ion battery. Journal of Alloys
and Compounds 2020, 831, 154607.
114. Xu, J.; Zhang, H.; Wang, R.; Xu, P.; Tong, Y.; Lu, Q.; Gao, F. Delicate Control
of Multishelled Zn–Mn–O Hollow Microspheres as a High-Performance Anode
for Lithium-Ion Batteries. Langmuir 2018, 34 (4), 1242-1248.
115. Chen, H.; Zhang, B.; Cao, Y.; Wang, X.; Yao, Y.; Yu, W.; Zheng, J.; Zhang,
J.; Tong, H. ZnS nanoparticles embedded in porous honeycomb-like carbon
nanosheets as high performance anode material for lithium ion batteries. Ceramics
International 2018, 44 (12), 13706-13711.
116. Yu, Y.; Song, M.; Chen, C.; Du, Y.; Li, C.; Han, Y.; Yan, F.; Shi, Z.; Feng, S.
Bortezomib-Encapsulated CuS/Carbon Dot Nanocomposites for Enhanced
Photothermal Therapy via Stabilization of Polyubiquitinated Substrates in the
Proteasomal Degradation Pathway. ACS Nano 2020, 14 (8), 10688-10703.
117. Peng, Q.; Zhang, S.; Yang, H.; Sheng, B.; Xu, R.; Wang, Q.; Yu, Y. Boosting
Potassium Storage Performance of the Cu2S Anode via Morphology Engineering
and Electrolyte Chemistry. ACS Nano 2020, 14 (5), 6024-6033.
118. Kim, H. S.; Choi, J.; Kong, J.; Kim, H.; Yoo, S. J.; Park, H. S. Regenerative
Electrocatalytic Redox Cycle of Copper Sulfide for Sustainable NH3 Production
under Ambient Conditions. ACS Catalysis 2021, 11 (1), 435-445.
119. Zeng, Z.; Yuan, S.; Yi, C.; Zhao, W.; Yuan, Z.; Dong, Y.; Zhu, J.; Yang, Y.;
Ge, P. Controlling of Ni-Based Composites in Salt Melt Synthesis with High
Sodium-Ion Storage Performance. ACS Applied Materials & Interfaces 2022, 14
(46), 52067-52078.
120. Sadan, M. K.; Jeon, M.; Yun, J.; Song, E.; Cho,E.-K.; Ahn, J.-H.; Ahn, H.-J.
Excellent Electrochemical Performance of a Mesoporous Nickel Sulfide Anode
for Na/K-Ion Batteries. ACS Applied Energy Materials 2021, 4 (12), 14537-14545.
121. Shuang, W.; Huang, H.; Liu, M.; Bai, T.; Zhang, J.; Wang, D. Engineering of
CuSx@C derived from Cu-MOF as long-life anodes for sodium-ion batteries.
Journal of Solid State Chemistry 2021, 302, 122348.
122. Han, J.; Ren, J. Optimization of cycling performance of hollow Cu2S@ NC
cubes anode for lithium-ion batteries in ether-based electrolyte. Journal of
Materials Science 2021, 56 (34), 19119-19127.
123. He, Y.; Zhang, P.; Huang, H.; Li, X.; Zhai, X.; Chen, B.; Guo, Z. Engineering
Sulfur Vacancies of Ni3S2 Nanosheets as a Binder-Free Cathode for an Aqueous
Rechargeable Ni-Zn Battery. ACS Applied Energy Materials 2020, 3 (4), 3863-
3875.
124. Feng, C.; Zhang, L.; Yang, M.; Song, X.; Zhao, H.; Jia, Z.; Sun, K.; Liu, G.
One-Pot Synthesis of Copper Sulfide Nanowires/Reduced Graphene Oxide
Nanocomposites with Excellent Lithium-Storage Properties as Anode Materials
for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (29),
15726-15734
125. Jiang, M.; Fan, X.; Wang, Z.; Yang, Z.; Huang, C.; Zhang, W. Oriented-Redox
Induced Uniform MnO2 Coating on Ni3S2 Nanorod Arrays as a Stable Anode for
Enhanced Performances of Lithium Ion Battery. Langmuir 2020, 36 (45), 13555-
13562
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明