博碩士論文 110324070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.141.47.79
姓名 洪千晴(Cain-Cing Hung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以第一原理計算探討鉭摻雜對於二氧化鈦作為鈉離子陽極材料之影響
(First-Principles Calculations to Investigate the Effect of Tantalum Doping on Titanium Dioxide as a Sodium-ion Anode Material)
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 預測固體溶質於超臨界二氧化碳中的溶解度★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測
★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應
★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2033-6-30以後開放)
摘要(中) 鈉離子電池由於成本上的絕對優勢及豐沛的天然資源,是替代鋰離子電池成為大規模儲能系統最合適候選人,尋求具有高壽命極高理論容量的陽極材料是主要的挑戰之一。二氧化鈦擁有毒性低、化學穩定度高,易取得且高理論電容量,因此被認為是有前途的鈉離子電池陽極材料,但卻有著高帶隙所導致的低電導率,先前的實驗文獻表明,摻雜6at%的鉭原子可以有效的改善電池的電化學性能及循環性能。
在這本篇研究中,我們基於第一性原理計算,利用density functional theory (DFT)以微觀的角度探討鈉離子在摻雜鉭原子前後之嵌入及擴散行為,並且我們也分析了Hirshfeld分布、電子密度差圖及電子結構。首先我們對三種常見的二氧化鈦晶型:銳鈦礦、金紅石及TiO2(B),進行全幾何結構優化計算,並且比較摻雜鉭原子分布遠、近之能量,以找到最有利的鉭摻雜分布。然後,根據不同的擴散環境,設計了兩個不同的擴散路徑,即鈉離子擴散時是否經過兩個相鄰的鉭原子之間,同時利用climbing image nudged elastic band (CI-NEB)方法計算比較不同路徑和鉭摻雜的影響。計算結果表明,鉭原子由於尺寸效應和較高的Hirshfeld電荷,因此並不利於鈉離子的傳輸,在銳鈦礦及金紅石的系統中,相較於鈉離子嵌入未經過兩個相鄰鉭原子的路徑,恰好經過兩個相鄰的鉭原子之間時擴散能障的增加量最多高達9倍之多,相反的,相較於鈉離子嵌入原始二氧化鈦,鉭摻雜TiO2(B)擴散能障些微下降0.168和0.175eV。最後,從電子結構的角度來看,鉭的摻雜產生了上自旋極化,形成新的局域態,有效的降低了銳鈦礦及 TiO2(B) 的帶隙,促進了電化學性能,我們認為鉭摻雜的銳鈦礦和 TiO2(B) 複合材料,並且適量的摻雜維持了鈉離子擴散性能的穩定性,奠定了鉭摻雜二氧化鈦作為鈉離子電池的潛力。
摘要(英) Sodium ion battery is the most suitable candidate to replace lithium ion battery as a large-scale energy storage system due to its absolute cost advantage and abundant natural resources, and the search for anode materials with high lifetime and high theoretical capacity is one of the major challenges. Titanium dioxide is considered as a promising anode material for sodium ion batteries because of its low toxicity, high chemical stability, easy availability and high theoretical capacity, but it has low conductivity due to high band gap.
In this study, we used density functional theory (DFT) to investigate the intercalation and diffusion behavior of sodium ions before and after doping with tantalum atoms from a microscopic perspective based on first principles calculations, and we also analyzed the Hirshfeld population, electron density difference map, and electronic structure. To find the most favorable tantalum doping distribution, we first performed full geometric optimization calculations for three common titanium dioxide polymorphs: anatase, rutile, and TiO2(B). Then, two different diffusion paths were designed according to different diffusion environments, i.e., whether the sodium ion passes through two neighboring tantalum atoms during diffusion, and the effects of different paths and tantalum doping were compared using the climbing image nudged elastic band (CI-NEB) method. The results show that tantalum dopants are not favorable for sodium ion transport due to size effects and higher Hirshfeld charges, and that in the case of anatase and rutile systems, the enhancement of the diffusion energy barrier is up to 9 folds when the sodium ion passes between two neighboring tantalum atoms compared to the pathway where the sodium ion is intercalated without passing through two neighboring tantalum atoms. On the contrary, the diffusion barrier of tantalum-doped TiO2(B) decreases slightly by 0.168 and 0.175 eV compared to that of sodium-intercalated pristine titanium dioxide.
Finally, from the perspective of electronic structure, tantalum doping generates upper spin polarization and forms new localized states, which effectively reduces the bandgap of anatase and TiO2(B) and promotes the electrochemical performance. We suggest that tantalum-doped anatase and TiO2(B) composite materials, and appropriate amount of doping maintains the stability of the diffusion performance of sodium ions, and establishes the potential of tantalum-doped titanium dioxide as a sodium-ion battery.
關鍵字(中) ★ 密度泛函理論
★ 鉭摻雜
★ 二氧化鈦
★ 銳鈦礦
★ 金紅石
★ TiO2(B)
關鍵字(英) ★ density functional theory
★ tantalum-doped
★ titanium dioxide
★ anatase
★ rutile
★ TiO2(B)
論文目次 中文摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 ix
第一章 緒論 1
1-1. 前言 1
1-2. 鈉離子電池組成 2
1-3. 常見鈉離子陰極、陽極材料 4
1-3-1. 陰極材料 (Cathode) 4
1-3-2. 陽極材料 (Anode) 4
1-4. 二氧化鈦作為鈉離子電池陽極材料 6
1-4-1. 銳鈦礦 (Anatase) 7
1-4-2. 金紅石 (Rutile) 9
1-4-3. 單斜晶系二氧化鈦 (TiO2(B)) 11
1-4-4. 二氧化鈦作陽極材料實驗文獻探討 13
1-4-5. 二氧化鈦作陽極材料理論計算探討 16
1-5. 研究動機 22
第二章 理論方法 23
2-1. 第一計算原理 (First-principles calculation) 23
2-2. 密度泛函理論 (Density functional theory, DFT) 23
2-3. Hohenberg-Kohn 定理 24
2-4. Kohn-Sham 方程式 25
2-5. 局部密度近似 (Local density approximation, LDA) 26
2-6. 廣義梯度近似 (Generalized gradient approximation, GGA) 26
2-7. GGA+U 近似修正 (Hubbard-like U) 27
2-8. 自洽場 (Self-consistent field, SCF) 27
2-9. Bloch’s 定理 28
2-10. 準位能 (Pseudopotential) 28
2-11. 截止能量 (Cut-off energy) 30
2-12. K-point 30
2-13. 自旋極化 (Spin-polarization) 31
2-14. Climbing image nudged elastic band method (CI-NEB) 31
2-15. 電子密度差圖 (Electron density difference map, EDDM) 31
第三章 計算細節 33
3-1. 模型建構 36
3-1-1. 二氧化鈦原始之結構 (Pristine TiO2) 36
3-1-3. 鉭摻雜二氧化鈦之結構 (Ta-TiO2) 37
3-1-4. 鈉離子嵌入二氧化鈦及其鉭摻雜後結構之位點 39
3-1-5. 鈉離子於二氧化鈦擴散路徑 40
第四章 計算結果與討論 42
4-1. 單位晶胞晶格參數 (Unit cell lattice parameter) 42
4-2. 鈉離子嵌入能 (Sodium intercalation energy) 44
4-2-1. 鈉離子嵌入二氧化鈦及其鉭摻雜結構之嵌入能 44
4-3. 鈉離子於二氧化鈦擴散路徑 (Diffusion path of sodium atom) 46
4-3-1. 鈉離子於二氧化鈦之擴散路徑 46
4-3-2. 鈉離子於鉭摻雜二氧化鈦之擴散路徑 46
4-4. 自旋極化與極化子分析 (Spin-polarization and polarons analysis) 53
4-5. 電子結構 (Electronic Structure) 62
第五章 結論 65
參考文獻 66
附錄一 鋰離子嵌入原始二氧化鈦及鉭摻雜二氧化鈦之模型建構 73
A1-1. 鋰離子嵌入二氧化鈦及其鉭摻雜後結構之位點 73
A1-2. 鋰離子於二氧化鈦之擴散路徑 73
附錄二 鋰離子嵌入原始二氧化鈦及鉭摻雜二氧化鈦之結果與討論 75
A2-1. 鋰離子嵌入二氧化鈦及其鉭摻雜結構之嵌入能 75
A2-2. 鋰離子嵌入二氧化鈦及其鉭摻雜結構之擴散能障 76
A2-3. 自旋極化與極化子分析 (Spin-polarization and polarons analysis) 82
參考文獻 [1]. Yoshio Nishi, “The dawn of lithium-ion batteries”, The Electrochemical Society Interface, Vol 25, pp. 71, 2016.
[2]. Jun-ichi Yamaki, et al., “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte”, Journal of Power Sources, Vol 74, pp. 219-227, 1998.
[3]. JO Besenhard, M Hess, and P Komenda, “Dimensionally stable Li-alloy electrodes for secondary batteries”, Solid State Ionics, Vol 40, pp. 525-529, 1990.
[4]. Michael D Slater, et al., “Sodium‐ion batteries”, Advanced Functional Materials, Vol 23, pp. 947-958, 2013.
[5]. Alexander Bauer, et al., “The scale‐up and commercialization of nonaqueous Na‐ion battery technologies”, Advanced Energy Materials, Vol 8, pp. 1702869, 2018.
[6]. KJPC Mizushima, et al., “LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density”, Materials Research Bulletin, Vol 15, pp. 783-789, 1980.
[7]. Bruce Dunn, Haresh Kamath, and Jean-Marie Tarascon, “Electrical energy storage for the grid: a battery of choices”, Science, Vol 334, pp. 928-935, 2011.
[8]. Shyue Ping Ong, et al., “Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials”, Energy & Environmental Science, Vol 4, pp. 3680-3688, 2011.
[9]. Damien Saurel, et al., “From charge storage mechanism to performance: a roadmap toward high specific energy sodium‐ion batteries through carbon anode optimization”, Advanced Energy Materials, Vol 8, pp. 1703268, 2018.
[10]. Clement Bommier, David Mitlin, and Xiulei Ji, “Internal structure–Na storage mechanisms–Electrochemical performance relations in carbons”, Progress in Materials Science, Vol 97, pp. 170-203, 2018.
[11]. Hui Xiong, et al., “Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries”, The journal of physical chemistry letters, Vol 2, pp. 2560-2565, 2011.
[12]. Premkumar Senguttuvan, et al., “Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries”, Chemistry of Materials, Vol 23, pp. 4109-4111, 2011.
[13]. Tahira Perveen, et al., “Prospects in anode materials for sodium ion batteries-A review”, Renewable and Sustainable Energy Reviews, Vol 119, pp. 109549, 2020.
[14]. DA Stevens and JR Dahn, “The mechanisms of lithium and sodium insertion in carbon materials”, Journal of The Electrochemical Society, Vol 148, pp. A803, 2001.
[15]. Naoaki Yabuuchi, et al., “Research development on sodium-ion batteries”, Chemical reviews, Vol 114, pp. 11636-11682, 2014.
[16]. Qiannan Liu, et al., “The cathode choice for commercialization of sodium‐ion batteries: layered transition metal oxides versus Prussian blue analogs”, Advanced Functional Materials, Vol 30, pp. 1909530, 2020.
[17]. Jian Peng, et al., “Prussian Blue analogues for sodium‐ion batteries: past, present, and future”, Advanced Materials, Vol 34, pp. 2108384, 2022.
[18]. Wei Luo, et al., “Ultrathin surface coating enables the stable sodium metal anode”, Advanced Energy Materials, Vol 7, pp. 1601526, 2017.
[19]. Markus Jäckle and Axel Groß, “Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth”, The Journal of chemical physics, Vol 141, pp. 2014.
[20]. Hongshuai Hou, et al., “Carbon anode materials for advanced sodium‐ion batteries”, Advanced energy materials, Vol 7, pp. 1602898, 2017.
[21]. Nana Wang, et al., “Comprehensive new insights and perspectives into Ti‐based anodes for next‐generation alkaline metal (Na+, K+) ion batteries”, Advanced Energy Materials, Vol 8, pp. 1801888, 2018.
[22]. Mengmeng Lao, et al., “Alloy‐based anode materials toward advanced sodium‐ion batteries”, Advanced Materials, Vol 29, pp. 1700622, 2017.
[23]. Tim Luttrell, et al., “Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films”, Scientific reports, Vol 4, pp. 4043, 2014.
[24]. Reza Katal, et al., “A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis”, Chemical Engineering Journal, Vol 384, pp. 123384, 2020.
[25]. Lioz Etgar, et al., “High efficiency quantum dot heterojunction solar cell using anatase (001) TiO2 nanosheets”, Advanced Materials, Vol 24, pp. 2202-2206, 2012.
[26]. Dawei Su, Shixue Dou, and Guoxiu Wang, “Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries”, Chemistry of Materials, Vol 27, pp. 6022-6029, 2015.
[27]. Zhenguo Yang, et al., “Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review”, Journal of Power Sources, Vol 192, pp. 588-598, 2009.
[28]. Yang Xu, et al., “Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries”, Chemical Communications, Vol 49, pp. 8973-8975, 2013.
[29]. Roel van de Krol, Albert Goossens, and Eric A Meulenkamp, “In situ X‐ray diffraction of lithium intercalation in nanostructured and thin film anatase TiO2”, Journal of the Electrochemical Society, Vol 146, pp. 3150, 1999.
[30]. Wei Li, et al., “A reversible phase transition for sodium insertion in anatase TiO2”, Chemistry of Materials, Vol 29, pp. 1836-1844, 2017.
[31]. Wen-Jin Yin, et al., “Excess electrons in reduced rutile and anatase TiO2”, Surface Science Reports, Vol 73, pp. 58-82, 2018.
[32]. Zhensheng Hong, et al., “Facile synthesis of rutile TiO2 mesocrystals with enhanced sodium storage properties”, Journal of Materials Chemistry A, Vol 3, pp. 17412-17416, 2015.
[33]. Yan Zhang, et al., “An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage”, Physical Chemistry Chemical Physics, Vol 17, pp. 15764-15770, 2015.
[34]. Yan Zhang, et al., “Graphene‐rich wrapped petal‐like rutile TiO2 tuned by carbon dots for high‐performance sodium storage”, Advanced Materials, Vol 28, pp. 9391-9399, 2016.
[35]. Corinne Arrouvel, Stephen C Parker, and M Saiful Islam, “Lithium insertion and transport in the TiO2− B anode material: a computational study”, Chemistry of Materials, Vol 21, pp. 4778-4783, 2009.
[36]. JA Dawson and J Robertson, “Improved calculation of Li and Na intercalation properties in anatase, rutile, and TiO2(B)”, The Journal of Physical Chemistry C, Vol 120, pp. 22910-22917, 2016.
[37]. Biao Chen, et al., “1D sub‐nanotubes with anatase/bronze TiO2 nanocrystal wall for high‐rate and long‐life sodium‐ion batteries”, Advanced Materials, Vol 30, pp. 1804116, 2018.
[38]. Liming Wu, et al., “Anatase TiO2 nanoparticles for high power sodium-ion anodes”, Journal of Power Sources, Vol 251, pp. 379-385, 2014.
[39]. Jun Chen, et al., “Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies”, ACS applied materials & interfaces, Vol 8, pp. 9142-9151, 2016.
[40]. Jagabandhu Patra, et al., “Hydrogenated anatase and rutile TiO2 for sodium-ion battery anodes”, ACS Applied Energy Materials, Vol 4, pp. 5738-5746, 2021.
[41]. Zaiyuan Le, et al., “Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors”, ACS nano, Vol 11, pp. 2952-2960, 2017.
[42]. Ying Wu, et al., “Nitrogen‐Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium‐Ion Batteries”, Small, Vol 12, pp. 3522-3529, 2016.
[43]. Qingmeng Gan, et al., “Defect-assisted selective surface phosphorus doping to enhance rate capability of titanium dioxide for sodium ion batteries”, ACS nano, Vol 13, pp. 9247-9258, 2019.
[44]. Weifeng Zhang, et al., “Sulfur-doped anatase TiO2 as an anode for high-performance sodium-ion batteries”, ACS Applied Energy Materials, Vol 2, pp. 3791-3797, 2019.
[45]. Hanna He, et al., “Iron-doped cauliflower-like rutile TiO2 with superior sodium storage properties”, ACS Applied Materials & Interfaces, Vol 9, pp. 6093-6103, 2017.
[46]. Fei Zhao, et al., “Niobium doped anatase TiO2 as an effective anode material for sodium-ion batteries”, Journal of Materials Chemistry A, Vol 3, pp. 22969-22974, 2015.
[47]. Hiroyuki Usui, et al., “Nb-doped rutile TiO2: a potential anode material for Na-ion battery”, ACS applied materials & interfaces, Vol 7, pp. 6567-6573, 2015.
[48]. Hiroyuki Usui, et al., “Tantalum-doped titanium oxide with rutile structure as a novel anode material for sodium-ion battery”, ACS Applied Energy Materials, Vol 2, pp. 3056-3060, 2019.
[49]. Vignesh Kumaravel, et al., “Unravelling the impact of Ta doping on the electronic and structural properties of titania: A combined theoretical and experimental approach”, The Journal of Physical Chemistry C, Vol 126, pp. 2285-2297, 2022.
[50]. Marina V Koudriachova, Nicholas M Harrison, and Simon W de Leeuw, “Density-functional simulations of lithium intercalation in rutile”, Physical Review B, Vol 65, pp. 235423, 2002.
[51]. Benjamin J Morgan and Graeme W Watson, “GGA+ U description of lithium intercalation into anatase TiO2”, Physical Review B, Vol 82, pp. 144119, 2010.
[52]. Sten Lunell, et al., “Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment”, Journal of the American Chemical Society, Vol 119, pp. 7374-7380, 1997.
[53]. Fleur Legrain, Oleksandr Malyi, and Sergei Manzhos, “Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study”, Journal of Power Sources, Vol 278, pp. 197-202, 2015.
[54]. Benjamin J Morgan, David O Scanlon, and Graeme W Watson, “Small polarons in Nb-and Ta-doped rutile and anatase TiO2”, Journal of Materials Chemistry, Vol 19, pp. 5175-5178, 2009.
[55]. Pierre Hohenberg and Walter Kohn, “Inhomogeneous electron gas”, Physical review, Vol 136, pp. B864, 1964.
[56]. W Kohn and LJ Sham, “Quantum density oscillations in an inhomogeneous electron gas”, Physical Review, Vol 137, pp. A1697, 1965.
[57]. John P Perdew, et al., “Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”, Physical Review B, Vol 48, pp. 4978, 1993.
[58]. John P Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized gradient approximation made simple”, Physical review letters, Vol 77, pp. 3865, 1996.
[59]. Axel D Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical review A, Vol 38, pp. 3098, 1988.
[60]. Vladimir I Anisimov, Jan Zaanen, and Ole K Andersen, “Band theory and Mott insulators: Hubbard U instead of Stoner I”, Physical Review B, Vol 44, pp. 943, 1991.
[61]. Mike C Payne, et al., “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”, Reviews of modern physics, Vol 64, pp. 1045, 1992.
[62]. Graeme Henkelman, Blas P Uberuaga, and Hannes Jónsson, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths”, The Journal of chemical physics, Vol 113, pp. 9901-9904, 2000.
[63]. Stewart J Clark, et al., “First principles methods using CASTEP”, Zeitschrift für kristallographie-crystalline materials, Vol 220, pp. 567-570, 2005.
[64]. David Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”, Physical review B, Vol 41, pp. 7892, 1990.
[65]. Kesong Yang, et al., “First-principles GGA+ U study of the different conducting properties in pentavalent-ion-doped anatase and rutile TiO2”, Journal of Physics D: Applied Physics, Vol 47, pp. 275101, 2014.
[66]. Dwi Panduwinata and Julian D Gale, “A first principles investigation of lithium intercalation in TiO2-B”, Journal of Materials Chemistry, Vol 19, pp. 3931-3940, 2009.
[67]. Thomas P Feist and Peter K Davies, “The soft chemical synthesis of TiO2(B) from layered titanates”, Journal of solid state chemistry, Vol 101, pp. 275-295, 1992.
[68]. Jeremy K Burdett, et al., “Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K”, Journal of the American Chemical Society, Vol 109, pp. 3639-3646, 1987.
[69]. Marina V Koudriachova, Nicholas M Harrison, and Simon W de Leeuw, “Diffusion of Li-ions in rutile. An ab initio study”, Solid State Ionics, Vol 157, pp. 35-38, 2003.
[70]. Arvids Stashans, et al., “Theoretical study of lithium intercalation in rutile and anatase”, Physical Review B, Vol 53, pp. 159, 1996.
[71]. Marina V Koudriachova, Nicholas M Harrison, and Simon W de Leeuw, “Effect of diffusion on lithium intercalation in titanium dioxide”, Physical review letters, Vol 86, pp. 1275, 2001.
[72]. Benjamin J Morgan and Paul A Madden, “Lithium intercalation into TiO2(B)
: a comparison of LDA, GGA, and GGA+ U density functional calculations”, Physical Review B, Vol 86, pp. 035147, 2012.
[73]. Anthony G Dylla, Graeme Henkelman, and Keith J Stevenson, “Lithium insertion in nanostructured TiO2(B)
architectures”, Accounts of chemical research, Vol 46, pp. 1104-1112, 2013.
[74]. Ling-Ming KONG, et al., “First-principles study on TiO2-B with oxygen vacancies as a negative material of rechargeable lithium-ion batteries”, Acta Physico-Chimica Sinica, Vol 32, pp. 656-664, 2016.
[75]. Michele Sacerdoti, et al., “XAS investigation of tantalum and niobium in nanostructured TiO2 anatase”, Journal of Solid State Chemistry, Vol 177, pp. 1781-1788, 2004.
[76]. Hiroyuki Usui, et al., “Indium-doped rutile titanium oxide with reduced particle length and its sodium storage properties”, ACS omega, Vol 5, pp. 15495-15501, 2020.
[77]. Hanna He, et al., “Plasma‐induced amorphous shell and deep cation‐site S doping endow TiO2 with extraordinary sodium storage performance”, Advanced Materials, Vol 30, pp. 1801013, 2018.
[78]. N Aaron Deskins and Michel Dupuis, “Electron transport via polaron hopping in bulk Ti O 2: A density functional theory characterization”, Physical Review B, Vol 75, pp. 195212, 2007.
[79]. AR Elmaslmane, MB Watkins, and KP McKenna, “First-principles modeling of polaron formation in TiO2 polymorphs”, Journal of chemical theory and computation, Vol 14, pp. 3740-3751, 2018.
[80]. Szu-Nung Kao, et al., “Investigating lithium intercalation and diffusion in Nb-doped TiO2 by first principles calculations”, Journal of the Taiwan Institute of Chemical Engineers, Vol 125, pp. 314-322, 2021.
[81]. XJ Xiao, et al., “First principles study of the electronic and optical properties of high‐valence transition metal‐doped anatase titanium dioxide”, Materialwissenschaft und Werkstofftechnik, Vol 53, pp. 1551-1560, 2022.
[82]. Krzysztof Wohlfeld. Spin, Orbital, and Spin‐Orbital Polarons in Transition Metal Oxides. in AIP Conference Proceedings. 2009. American Institute of Physics.
[83]. Clarence Zener, “Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure”, Physical Review, Vol 82, pp. 403, 1951.
[84]. WP Su, “Spin polarons in the two-dimensional Hubbard model: A numerical study”, Physical Review B, Vol 37, pp. 9904, 1988.
[85]. EL Nagaev, “Spin polaron theory for magnetic semiconductors with narrow bands”, physica status solidi (b), Vol 65, pp. 11-60, 1974.
[86]. A Mauger, “Magnetic polaron: Theory and experiment”, Physical Review B, Vol 27, pp. 2308, 1983.
[87]. Amir Farzaneh, et al., “Optical and photocatalytic characteristics of Al and Cu doped TiO2: Experimental assessments and DFT calculations”, Journal of Physics and Chemistry of Solids, Vol 161, pp. 110404, 2022.
[88]. L Kavan, et al., “Electrochemical and photoelectrochemical investigation of single-crystal anatase”, Journal of the American Chemical Society, Vol 118, pp. 6716-6723, 1996.
[89]. G Betz, H Tributsch, and R Marchand, “Hydrogen insertion (intercalation) and light induced proton exchange at TiO2(B)-electrodes”, Journal of applied electrochemistry, Vol 14, pp. 315-322, 1984.
[90]. Andrivo Rusydi, et al., “Cationic-vacancy-induced room-temperature ferromagnetism in transparent, conducting anatase Ti1− x Ta x O2 (x∼ 0.05) thin films”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol 370, pp. 4927-4943, 2012.
[91]. Emanuele Finazzi, et al., “Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+ U, and hybrid DFT calculations”, The Journal of chemical physics, Vol 129, pp. 154113, 2008.
[92]. Taro Hitosugi, et al., “Ta-doped anatase TiO2 epitaxial film as transparent conducting oxide”, Japanese journal of applied physics, Vol 44, pp. L1063, 2005.
[93]. Meagen A Gillispie, et al., “Sputtered Nb-and Ta-doped TiO2 transparent conducting oxide films on glass”, Journal of Materials Research, Vol 22, pp. 2832-2837, 2007.
[94]. A Roy Barman, et al., “Multifunctional Ti 1− x Ta x O 2: Ta doping or alloying?”, Applied Physics Letters, Vol 98, pp. 072111, 2011.
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明