博碩士論文 110223021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.15.225.173
姓名 范芳榕(Fang-Rong Fan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 製備具磺酸官能基之中孔洞矽材應用於有機催化反應
(Sulfonic Acid Functionalized Mesoporous Silica for the Catalytic Organic Reaction)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 中孔洞矽材具有高比表面積、適當孔洞大小與熱穩定佳等等的優勢,因此本 研究主要以中孔洞矽材做為底材,並修飾磺酸官能基,應用於酯化反應與佩希 曼縮合反應 (Pechmann Condensation)中。
本研究分成兩個部份。第一部份,本研究利用直接合成法,將磺酸官能基修 飾在中孔洞矽材 SBA-15 上。透過調整磺酸官能基與 TEOS 的比例,可合成出 一系列 S15SX (X = 5, 10, 20, 25, 30)的樣品。經過 SAXRD, BET, XPS, TGA 等儀 器鑑定確認材料結構的正確性與穩定性後,應用於三羥甲基丙烷 (TMP)酯化反 應,並分別探討不同結構中孔洞矽材、磺酸官能基比例、不同丙烯酸與三羥甲 基丙烷比例、不同溶劑比例、不同催化劑量等變因帶給反應的差異性。最後得 知 AA 與 TMP 的莫爾比 2:1、環己烷與甲苯的體積比為 2:1 時,加入 1.8g S15S10 並施以 25 c.c/min 的空氣流速,能達到 50 %TMPDA 產量。而且,回收測試實 驗中,當 S15S10 進行五次回收實驗後,仍具有 13%的 TMPDA 產量。
第二部份,本研究以擴孔的 SBA-16,LP-SBA-16 作為底材,並調整磺酸官能 基比例合成一系列樣品:LP-S16SX (X= 5, 10, 20),應用於佩希曼縮合反應中。研 究中探討不同反應物比例、不同溫度、不同催化劑量、不同磺酸官能基比例以 及不同結構的催化劑所帶來的影響。最後,當 Resorcinol 與 EAA 的莫爾比例為 1:1.5、反應時間 5 分鐘、溫度為 130 °C 時,可達到 TOF 值為 810 (h-1)的效果。 在回收測試中,催化劑反應五次後仍具有 7%的產率。
摘要(英) In this study, we adapted silica mesoporous materials loading with sulfonic acid group as catalyst due to its high specific surface area, proper pore size and high thermal stability properties. During the first part, we synthesized S15SX (X = 5, 10, 20, 25, 30) with TEOS as the silicon source, MPTMS as the sulfonica acid group precursor and P123 as the soft template. Due to the BET results, S15S10 possess 555cm2/g high specific surface area and 1.01nm optimal pore size. Those properties seem to favor the performance in esterification. Therefore, we applied it into Fischer esterification to produce TMPDA and explored the best experimental condition. Finally, we found that adding 1.8g S15S10 and 25 c.c/min air flow in the solution when molar ratio of AA:TMP is 2:1 and volume ratio of cyclohexane:toluene is 2:1 could reach 50% TMPDA GC Percent. Moreover, S15S10 still could produce 13% TMPDA GC Percent after 5 times recycling test.
In the second part, we employed LP-SBA-16 as the supporting materials and loaded with different amount of sulfonic acid group (LP-S16SX, X = 5, 10 ,20). Its high specific surface area, optimal pore size properties may be possibly favor the Pechmann condensation. Eventually, we found that LP-S16S5 exhibited high performance (810 (h-1)) in Pechmann condensation at 130 °C. Last but not least, LP- S16S5 still could get 7 % yield after 5 recycling tests.
關鍵字(中) ★ 中孔洞材料
★ 二氧化矽
★ 異相觸媒
★ 佩希曼縮合反應
★ 酯化反應
★ 光固化反應
關鍵字(英) ★ Silica Mesoporous materials
★ Heterogeneous catalyst
★ Pechmann condensation
★ Esterification
★ Photopolymerization
★ SiO2
論文目次 第一章 緒論 ................................................................................................ 1
1-1 中孔洞矽材( Mesoporous Silica Materials, MSMs ) ................................. 1
1-1-1 中孔洞矽材簡介 ............................................................................. 1
1-1-2 中孔洞矽材的種類 ......................................................................... 2
1-1-3 中孔洞矽材合成方式 ..................................................................... 4
1-1-4 界面活性劑的種類 ......................................................................... 6
1-1-5 微胞形成方式與種類 ..................................................................... 9
1-1-6 微胞與矽源的作用力 ................................................................... 11
1-1-7 具官能基之中孔洞矽材 ............................................................... 14
1-2 光固化反應介紹 ...................................................................................... 16
1-2-1 光固化反應簡介 ........................................................................... 16
1-2-2 丙烯酸酯介紹 ............................................................................... 20
1-2-3 催化 1,1,1-三羥甲基丙烷反應催化劑種類介紹 ......................... 22
1-3 佩西曼縮合反應 (Pechmann Condensatoion)介紹 ................................. 24
1-3-1 香豆素介紹 ................................................................................... 24
1-3-2 合成香豆素之發展 ....................................................................... 26
1-3-3 佩希曼縮合反應的催化劑種類與發展 ........................................ 27
1-4 研究目的與動機 ............................................................................... 31
第二章 實驗部分 ........................................................................................ 32
2-1 實驗藥品 ............................................................................................. 32
2-1-1 第一部分所使用藥品 ................................................................... 32
2-1-2 第二部分所使用藥品 ................................................................... 33
2-2 具磺酸官能基之中孔洞矽材催化佩希曼縮合反應 ....................... 34
2-2-1 合成具磺酸官能基之 SBA-15 (S15SX) ...................................... 34
2-2-2 合成具磺酸官能基之 SBA-16 (S16SX) ...................................... 35
2-2-3 合成具磺酸官能基之 KIT-6 (K6SX) ........................................... 35
2-2-4 合成具磺酸官能基之 LP-SBA-16 (LP-S61SX) ........................... 36
2-2-5 合成具磺酸官能基之 MCM-41 (M41SX) ................................... 36
2-2-6 合成具磺酸官能基之 FDU-12( F12SX ) ..................................... 37
2-2-7 以硫酸溶液移除中孔洞模板劑 ................................................... 37
2-2-8 催化三羥甲基丙烷為三羥甲基丙烷二丙烯酸酯實驗 ................ 37
2-2-9 催化三羥甲基丙烷反應重複使用實驗 ........................................ 38
2-2-10 以具磺酸官能基之中孔洞矽材催化佩希曼縮合反應 .............. 38
2-2-11 催化佩希曼縮合反應重複使用實驗 .......................................... 38
2-3 實驗儀器 ............................................................................................ 39
2-3-1 實驗合成儀器 ............................................................................... 39
2-3-2 實驗鑑定儀器 ............................................................................... 39
2-4 鑑定儀器原理 ................................................................................... 41
2-4-1 同步輻射中心光束線 (NSRRC) .................................................. 41
2-4-2 氮氣吸附脫附儀 (ASAP) ............................................................ 43
2-4-3 X 光電子能譜儀 (XPS) ................................................................ 48
2-4-4 穿透式電子顯微鏡 (TEM) .......................................................... 50
2-4-5 傅立葉紅外線吸收光譜儀 (FT-IR) ............................................. 51
2-4-6 核磁共振儀 (NMR) ..................................................................... 53
2-4-7 元素分析儀 (EA) ......................................................................... 56
2-4-8 氣相層析儀 (GC) ......................................................................... 57
2-4-9 掃描式電子顯微鏡 (SEM) .......................................................... 61
2-4-10 熱重分析儀 (TGA) .................................................................... 62
第三章 結果與討論 ................................................................................ 63
3-1 具磺酸官能基中孔洞矽材鑑定......................................................... 63
3-1-1 小角度 X 光繞射圖 (SAXRD) .................................................... 63
3-1-2 氮氣吸脫附鑑定 (BET) ............................................................... 67
3-1-3 光電子能譜 (XPS) ....................................................................... 73
3-1-4 傅立葉轉換紅外線光譜圖 (FT-IR) ............................................. 76
3-1-5 固態核磁共振圖譜 (Solid State NMR) ....................................... 78
3-1-6 元素分析 (EA) ............................................................................. 84
3-1-7 熱重分析 (TGA) .......................................................................... 85
3-1-8 穿透式電子顯微鏡 (TEM) .......................................................... 88
3-1-9 掃描式電子顯微鏡 (SEM) .......................................................... 93
3-2 催化三羥甲基丙烷 (TMP)為三羥甲基丙烷二丙烯酸酯 (TMPDA)實驗
.................................................................................................................... 97
3-2-1 以不同結構中孔洞矽材催化三羥甲基丙烷反應 ........................ 97
3-2-2 以 S15SX 催化三羥甲基丙烷反應 ............................................ 102
3-2-3 固定磺酸官能基比例並探討孔洞大小對催化三羥甲基丙烷反應
之影響 ................................................................................................... 104
3-2-4 以不同催化劑量催化三羥甲基丙烷反應 .................................. 106
3-2-5 以不同起始物比例催化三羥甲基丙烷反應 .............................. 108
3-2-6 以不同溶劑比例催化三羥甲基丙烷反應 .................................. 110
3-2-7 反應中逐漸增加迴流溫度以催化三羥甲基丙烷反應 .............. 112
3-2-8 催化三羥甲基丙烷反應回收測試 ............................................. 114
3-3 催化三羥甲基丙烷 (TMP)為三羥甲基丙烷二丙烯酸酯 (TMPTA)實驗
................................................................................................................. 126
3-3-1 以不同催化劑量催化三羥甲基丙烷反應 .................................. 126
3-4 中孔洞矽材催化佩西曼縮合反應實驗 ............................................ 128
3-4-1 以不同結構中孔洞矽材催化佩西曼縮合反應實驗 .................. 128
3-4-2 以 LP-S16SX 催化佩西曼縮合反應實驗 .................................. 130
3-4-3 以 LP-S16SCY 催化佩西曼縮合反應實驗 ................................ 132
3-4-4 不同反應物比例對催化佩西曼縮合反應之影響 ...................... 134
3-4-5 不同催化劑量對催化佩西曼縮合反應之影響 .......................... 135
3-4-6 不同反應溫度對催化佩西曼縮合反應之影響 .......................... 137
3-4-7 不同衍生物對催化佩西曼縮合反應之影響 .............................. 138
3-4-8 催化佩西曼縮合反應回收測試 ................................................. 139
3-4-9 催化佩西曼縮合反應回收改善 ................................................. 148
第四章 結論 ........................................................................................... 149
第五章 參考資料 .................................................................................. 150
參考文獻 1. Vernimmen, J.; Meynen, V.; Cool, P., Synthesis and catalytic applications of combined zeolitic/mesoporous materials. Beilstein Journal of Nanotechnology 2011, 2, 785-801.
2. Dyer, A., An introduction to zeolite molecular sieves. John Wiley & Sons: Chichester, N. Y., 1988.
3. Corma, A., State of the art and future challenges of zeolites as catalysts. Journal of Catalysis 2003, 216 (1), 298-312.
4. Doadrio, A. L.; Sousa, E. M. B.; Doadrio, J. C.; Pérez Pariente, J.; Izquierdo-Barba, I.; Vallet-Regı́, M., Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. Journal of Controlled Release 2004, 97 (1), 125-132.
5. Kulkarni, S. J., Recent trends in the applications of zeolites and molecular sieves for the synthesis of speciality and fine chemicals. In Studies in Surface Science and Catalysis, Rao, T. S. R. P.; Dhar, G. M., Eds. Elsevier: 1998; Vol. 113, pp 151-161.
6. Arends, I. W. C. E.; Sheldon, R. A., Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A: General 2001, 212 (1), 175-187.
7. Djaeni, M.; Bartels, P.; Sanders, J.; Straten, G. v.; Boxtel, A. J. B. v., Process Integration for Food Drying with Air Dehumidified by Zeolites. Drying Technology 2007, 25 (1), 225-239.
8. Kang, T.; Park, Y.; Choi, K.; Lee, J. S.; Yi, J., Ordered mesoporous silica (SBA-15) derivatized with imidazole-containing functionalities as a selective adsorbent of precious metal ions. Journal of Materials Chemistry 2004, 14 (6), 1043-1049.
9. Satsuma, A.; Yang, D.; Shimizu, K.-i., Effect of acidity and pore diameter of zeolites on detection of base molecules by zeolite thick film sensor. Microporous and Mesoporous Materials 2011, 141 (1), 20-25.
10. Coronas, J.; Santamaria, J., The use of zeolite films in small-scale and micro- scale applications. Chemical Engineering Science 2004, 59 (22), 4879-4885.
11. Li, W.; Liu, J.; Zhao, D., Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials 2016, 1 (6), 16023.
12. Narayan, R.; Nayak, U. A.-O.; Raichur, A. M.; Garg, S., Mesoporous Silica
150

Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. LID - 10.3390/pharmaceutics10030118 [doi] LID - 118. (1999-4923 (Print)).
13. Savić, S.; Vojisavljević, K.; Počuča-Nešić, M.; Živojević, K.;
Mladenovic, M.; Knezevic, N., Hard Template Synthesis of Nanomaterials Based on Mesoporous Silica. Metallurgical and Materials Engineering 2018, 24.
14. Malgras, V.; Ji, Q.; Kamachi, Y.; Mori, T.; Shieh, F.-K.; Wu, K.; Ariga, K.; Yamauchi, Y., Templated Synthesis for Nanoarchitectured Porous Materials. Bulletin of the Chemical Society of Japan 2015.
15. Cortés, H.; Hernández-Parra, H.; Bernal-Chávez, S. A.; Prado-Audelo, M. L. D.; Caballero-Florán, I. H.; Borbolla-Jiménez, F. V.; González-Torres, M.; Magaña, J. J.; Leyva-Gómez, G. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses Materials [Online], 2021.
16. Sachin, K.; Karpe, S.; Singh, M.; Bhattarai, A., Physicochemical Properties of Mixed Surfactants System at Different Temperatures. 2020; pp 9-16.
17. Akbari, S.; Nour, A.; Yunus, R.; Fayaz, F.; Alara, O., Biosurfactants—a new frontier for social and environmental safety: a mini review. Biotechnology Research and Innovation 2018, 2, 81-90
18. Remita, S.; Dutt, S.; Siril, P., Swollen liquid crystals (SLCs): A versatile template for the synthesis of nano structured materials. RSC Advances 2017, 7, 5733-5750.
19. Stuart, M.; Boekema, E., Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition are mediated by the packing parameter of phospholipid–detergent systems. Biochimica et biophysica acta 2007, 1768, 2681-9. 20. dos Santos, S. M. L.; Nogueira, K. A. B.; de Souza Gama, M.; Lima, J. D. F.; da Silva Júnior, I. J.; de Azevedo, D. C. S., Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules. Microporous and Mesoporous Materials 2013, 180, 284-292.
21. Florek, J.; Guillet-Nicolas, R.; Kleitz, F., Functional Materials
4. Ordered mesoporous silica: synthesis and applications. In For Energy, Sustainable Development and Biomedical Sciences, Leclerc, M.; Gauvin, R., Eds. De Gruyter: 2014; pp 61-100.
22. Brühwiler, D., Postsynthetic functionalization of mesoporous silica. Nanoscale 2010, 2 (6), 887-892.
23. Vercaemst, C. Isomeric olefinic periodic mesoporous organosilicas: an emerging class of versatile nanomaterials. 2009.
151

24. Liska, R.; Schuster, M.; Inführ, R.; Turecek, C.; Fritscher, C.; Seidl, B.; Schmidt, V.; Kuna, L.; Haase, A.; Varga, F.; Lichtenegger, H.; Stampfl, J., Photopolymers for rapid prototyping. Journal of Coatings Technology and Research 2007, 4 (4), 505-510.
25. Decker, C., The use of UV irradiation in polymerization. Polymer International 1998, 45 (2), 133-141.
26. Odian, G., Principles of Polymerization. Wiley: 2004.
27. M. Sangermano, I. R., and A. Chiappone, Silicon (100)/SiO2 by XPS. Polymers 2018, 20 (1), 36.
28. Bellus, N. B. a. D., Pure Appl. Chem. 1995, (67), 25.
29. Aoshima, S.; Kanaoka, S., A Renaissance in Living Cationic Polymerization. Chemical Reviews 2009, 109 (11), 5245-5287.
30. Endruweit, A.; Johnson, M. S.; Long, A. C., Curing of composite components by ultraviolet radiation: A review. Polymer Composites 2006, 27 (2), 119-128.
31. UV Curing—Technical Principle and Mechanism. Ciba Specialty Chemicals: 2004.
32. Erceg Kuzmić, A.; Radošević, M.; Bogdanić, G.; Srića, V.; Vuković, R., Studies on the influence of long chain acrylic esters polymers with polar monomers as crude oil flow improver additives. Fuel 2008, 87 (13), 2943-2950.
33. Li, S.; Jiang, S.; Zhang, P.; Jiang, P.; Leng, Y., Protonic ionic liquids as efficient phase-separation catalysts for esterification of trimethylolpropane and acrylic acid. Journal of Molecular Liquids 2022, 360, 119403.
34. Decker, C., UV‐radiation curing chemistry. Pigment & Resin Technology 2001, 30 (5), 278-286.
35. Lang, M.; Hirner, S.; Wiesbrock, F.; Fuchs, P. A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization Polymers [Online], 2022.
36. Maurya, S. D.; Kurmvanshi, S. K.; Mohanty, S.; Nayak, S. K., A Review on Acrylate-Terminated Urethane Oligomers and Polymers: Synthesis and Applications. Polymer-Plastics Technology and Engineering 2018, 57 (7), 625-656. 37. Naderi, N.; Rastegar, S.; Mohseni, M.; Khorasani, M., Controlling final morphologies of two-step polymerization induced phase separated blends of trimethylolpropane triacrylate/acrylate copolymer through copolymer molecular weight. Polymer Testing 2017, 61, 146-149.
38. Kirkland, D.; Fowler, P., A review of the genotoxicity of trimethylolpropane triacrylate (TMPTA). Mutation Research/Genetic Toxicology and Environmental
152

Mutagenesis 2018, 828, 36-45.
39. Sasseville, D., DERMATITIS 2012, 23 (1).
40. Soltani, S.; Khanian, N.; Shean Yaw Choong, T.; Asim, N.; Zhao, Y., Microwave-assisted hydrothermal synthesis of sulfonated TiO2-GO core–shell solid spheres as heterogeneous esterification mesoporous catalyst for biodiesel production. Energy Conversion and Management 2021, 238, 114165.
41. Mou, R.; Wang, X.; Wang, Z.; Zhang, D.; Yin, Z.; Lv, Y.; Wei, Z., Synthesis of fuel bioadditive by esterification of glycerol with acetic acid over hydrophobic polymer-based solid acid. Fuel 2021, 302, 121175.
42. Essayem, N.; Martin, V.; Riondel, A.; Védrine, J. C., Esterification of acrylic acid with but-1-ene over sulfated Fe- and Mn-promoted zirconia. Applied Catalysis A: General 2007, 326 (1), 74-81.
43. Lima, C. G. S.; Jorge, E. Y. C.; Batinga, L. G. S.; Lima, T. d. M.; Paixão, M. W., ZSM-5 zeolite as a promising catalyst for the preparation and upgrading of lignocellulosic biomass-derived chemicals. Current Opinion in Green and Sustainable Chemistry 2019, 15, 13-19.
44. Rattanaphra, D.; Temrak, A.; Nuchdang, S.; Kingkam, W.; Puripunyavanich, V.; Thanapimmetha, A.; Saisriyoot, M.; Srinophakun, P., Catalytic behavior of La2O3-promoted SO42− /ZrO2 in the simultaneous esterification and transesterification of palm oil. Energy Reports 2021, 7, 5374-5385.
45. Hanif, M. A.; Nisar, S.; Rashid, U., Supported solid and heteropoly acid catalysts for production of biodiesel. Catalysis Reviews 2017, 59 (2), 165-188.
46. Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.;
Forbes, D. C.; Davis, J. H., Novel Brønsted Acidic Ionic Liquids and Their Use as Dual Solvent−Catalysts. Journal of the American Chemical Society 2002, 124 (21), 5962-5963.
47. Joseph, T.; Sahoo, S.; Halligudi, S. B., Brönsted acidic ionic liquids: A green, efficient and reusable catalyst system and reaction medium for Fischer esterification. Journal of Molecular Catalysis A: Chemical 2005, 234 (1), 107-110. 48. Gonzalez-Carrillo, G.; Gonzalez, J.; Emparan-Legaspi, M. J.; Lino-Lopez, G. J.; Aguayo-Villarreal, I. A.; Ceballos-Magaña, S. G.; Martinez-Martinez, F. J.; Muñiz-Valencia, R., Propylsulfonic acid grafted on mesoporous siliceous FDU-5 material: A high TOF catalyst for the synthesis of coumarins via Pechmann condensation. Microporous and Mesoporous Materials 2020, 307, 110458.
49. Post, P.; Wurlitzer, L.; Maus-Friedrichs, W.; Weber, A. P., Characterization
153

and Applications of Nanoparticles Modified in-Flight with Silica or Silica-Organic Coatings. LID - 10.3390/nano8070530 [doi] LID - 530. (2079-4991 (Print)).
50. David S. Jensen, S. S. K., Nitesh Madaan, Silicon (100)/SiO2 by XPS. Surface Science Spectra 2013, 20 (1).
51. D′Souza, A. S.; Pantano, C. G., Mechanisms for Silanol Formation on Amorphous Silica Fracture Surfaces. Journal of the American Ceramic Society 1999, 82 (5), 1289-1293.
52. Ghoreishi, K.; Asim, N.; Yarmo, A.; Samsudin, M., Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation. Chemical Papers 2014, 68.
53. Ahmadi, E.; Dehghannejad N Fau - Hashemikia, S.; Hashemikia S Fau - Ghasemnejad, M.; Ghasemnejad M Fau - Tabebordbar, H.; Tabebordbar, H., Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery. (1521-0464 (Electronic)). 54. Jutarosaga, T.; Jeoung, J. S.; Seraphin, S., Infrared spectroscopy of Si–O bonding in low-dose low-energy separation by implanted oxygen materials. Thin Solid Films 2005, 476 (2), 303-311.
55. Alipour, L.; Hamamoto, M.; Nakashima, S.; Harui, R.; Furiki, M.; Oku, O., Infrared Microspectroscopy of Bionanomaterials (Diatoms) with Careful Evaluation of Void Effects. Applied spectroscopy 2016, 70.
56. Samart, C.; Karnjanakom, S.; Chaiya, C.; Reubroycharoen, P.; Sawangkeaw, R.; Chareonpanich, M., Statistical optimization of biodiesel production from para rubber seed oil by SO3H-MCM-41 catalyst. Arabian Journal of Chemistry 2015, 43.
57. Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D., Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chemistry of Materials 2000, 12 (8), 2448-2459.
58. Kohns, R.; Meyer, R.; Wenzel, M.; Matysik, J.; Enke, D.; Tallarek, U., In situ synthesis and characterization of sulfonic acid functionalized hierarchical silica monoliths. Journal of Sol-Gel Science and Technology 2020, 96 (1), 67-82. 59. Deka, J. R.; Saikia, D.; Tsai, H.-H. G.; Chen, K.-T.; Kuan, W.-H.; Hsu, H.-C.; Kao, H.-M.; Yang, Y.-C., One Pot Synthesis of Cubic Mesoporous Silica KIT-6 Functionalized with Sulfonic Acid for Catalytic Dehydration of Fructose to 5- Hydroxymethylfurfural. ChemistrySelect 2022, 7 (45), e202202357.
60. Mohino, F.; Díaz, I.; Pérez-Pariente, J.; Sastre, E., Synthesis, 154

characterisation and catalytic activity of SO 3H-phenyl-MCM-41 materials. Studies in Surface Science and Catalysis - STUD SURF SCI CATAL 2002, 142, 1275-1282. 61. Freitas, L.; Gonzalez, I.; Macedo, W.; Sousa, E., Mesoporous silica materials functionalized with folic acid: preparation, characterization and release profile study with methotrexate. Journal of Sol-Gel Science and Technology 2015, 77.
62. Ferreira, G.; Gomide, V.; Silva-Cunha, A.; Góes, A.; Sousa, E., An in situ synthesis of mesoporous SBA-16/hydroxyapatite for ciprofloxacin release: in vitro stability and cytocompatibility studies. Journal of materials science. Materials in medicine 2014, 25.
63. Acrylic acid. https://commonchemistry.cas.org/detail?cas_rn=79-10-7.
64. Trimethylolpropane. https://commonchemistry.cas.org/detail?cas_rn=77-99-6. 65. Trimethylolpropane triacrylate. https://commonchemistry.cas.org/detail?cas_rn=15625-89-5
66. 2-Propenoic acid. https://commonchemistry.cas.org/detail?cas_rn=28628-65-1. 67. Trimethylolpropane monoallyl ether. . https://commonchemistry.cas.org/detail?cas_rn=682-11-1.
68. Li, Z.; Chen, Z.; Liu, J.; Fu, Y.; Liu, C.; Wang, P.; Jiang, M.; Lao, C., Additive manufacturing of lightweight and high-strength polymer-derived SiOC ceramics. Virtual and Physical Prototyping 2020, 15, 1-15.
69. Ganguly, S.; Ray, D.; Das, P.; Maity, P.; Mondal, S.; Aswal, V.;
Dhara, S.; Das, N., Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release. Ultrasonics Sonochemistry 2017, 42.
70. Hussien, F.; Keshe, M.; Alzobar, K.; Merza, J.; Karam, A., Synthesis and Nitration of 7-Hydroxy-4-Methyl Coumarin via Pechmann Condensation Using Eco-Friendly Medias. International Letters of Chemistry, Physics and Astronomy 2016, 69, 66-73.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明