博碩士論文 110223024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.133.147.87
姓名 劉品邑(Pin-Yi Liu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 製備酸性官能基之中孔洞矽材與奈米釕金屬中孔洞材料催化油酸酯化及硼烷氨水解脫氫之應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本篇論文研究分為兩部分。第一部分研究中,使用一鍋合成法, 合成出具有磺酸官能基修飾的中孔洞矽材 K6SX 系列之酸性催化劑。 透過粉末 X 光繞射儀、N2 吸脫附曲線、掃描式電子顯微鏡等儀器對 催化劑進行鑑定,此系列催化劑因具有高比表面積、大孔洞體積和附 有酸性位點等優點,將其用於催化油酸為油酸甲酯。經過一系列的實 驗優化,最後以K6S10作為此實驗的最佳催化劑,產物油酸甲酯 (MO) 在油酸/甲醇=1:20,反應時間 4 小時,其轉換率達 98%,產率為 91%。 此研究中,磺酸官能基修飾的中孔洞矽材表現出高催化活性及應用性。
第二部分研究中,主要是利用釕奈米金屬還原在材料 (Fe3O4@SiO2@KIT-6)中,因材料具有磁性可藉由外加磁場的方式將催 化劑與反應溶劑分離,使用化學還原法可有效地將 Ru NPs 快速地還 原在材料中。本部分實驗將合成出來的催化劑 Ru(X)/Y% Fe3O4@SiO2@KIT-6 經由儀器鑑定後並應用在硼烷氨水解脫氫上,研 究中也探討不同濃度(M/AB)、反應溫度及促進劑 NaOH 用量等優化 條件,以加速硼烷氨水解脫氫反應進行。經過實驗優化,Ru(2)/10% Fe3O4@SiO2@KIT-6 於鹼性條件下表現出良好的催化活性,其轉換頻 率 (TOF) 達 290.7 min-1。
摘要(英) This thesis consists of two parts. In the first part, sulfonic acid (-SO3H) functionalized mesoporous silica KIT-6 was synthesized and used as heterogeneous catalyst for the esterification of oleic acid. One pot co- condensation approach was used to synthesize the -SO3H functionalized 3D mesoporous silica KIT-6 using tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) as the silicon precursors. Prepared materials were characterized by SAXRD, N2 adsorption- desorption isotherm, SEM etc. –SO3H functionalized KIT-6 showed excellent catalytic activity for the esterification of oleic acid with methanol due to its high surface area, pore volume, and plenty of acidic sites in it. The effects of different parameters, such as, amount of –SO3H loading, initiator ratio, catalyst dosage and reaction temperature on the catalytic activity were also explored. KIT-6 functionalized with 10 mol% sulfonic acid groups (K6S10) was judged as the best catalyst in the optimized experimental conditions with a high conversion rate of 98% at OA/MeOH = 1:20 and a reaction time of 4 hours.
In the second part, the main work is to synthesize ruthenium nanoparticles within the pores of mesoporous silica martial (Fe3O4@SiO2@KIT-6) support, and use them as the catalysts for the hydrolytic dehydrogenation of ammonia borane. The metal nanoparticles were immobilized within the support by the double agent chemical reduction method using NaBH4 and NH3BH3 as the reducing agents. The synthesized Ru (X)/Y%Fe3O4@SiO2@KIT-6 materials were characterized by PXRD, N2 adsorption-desorption isotherm, SEM etc. Catalyst Ru(2)/10% Fe3O4@SiO2@KIT-6 exhibited high catalytic activity and turnover frequency up to 290.7 min-1, activation energy of 33.82 kJ/mol.
關鍵字(中) ★ 中孔洞材料
★ 酯化
★ 奈米金屬粒子
★ 硼烷氨
★ 脫氫
關鍵字(英) ★ mesoporous material
★ esterification
★ nanoparticles
★ ammmonia borane
★ dehydrogenation
論文目次 摘 要..................................................................................................... I Abstract.................................................................................................... II 目錄............................................................................................................V 圖目錄...................................................................................................... XI 表目錄..................................................................................................... XX 1 第一章 序論 ..........................................................................................1
1-1 中孔洞矽材 (Mesoprous Silica Materials, MSMs) .......................1 1-1-1 中孔洞矽材之簡介..........................................................1 1-1-2 中孔洞矽材的定義..........................................................2 1-1-3 中孔洞矽材合成方式......................................................4 1-1-4 界面微胞型成方式及種類..............................................6 1-1-5 微胞與矽源的作用力......................................................9
1-2 中孔洞矽材/中孔洞矽材表面修飾..............................................11 1-2-1 三維中孔洞矽材 KIT-6.................................................11 1-2-2 中孔洞矽材表面官能基修飾法....................................12 1-2-3 中孔洞矽材表面修飾磺酸官能基................................15
V

1-2-4 中孔洞矽材表面修飾羧酸官能基................................18 第壹部分 具磺酸官能基中孔洞矽材催化油酸(OA)為油酸甲酯(MO) ...............................................................................................................22 1-3 油酸酯化反應...............................................................................22
1-3-1 油酸甲酯介紹................................................................22 1-3-2 磺酸化中孔洞矽材催化油酸酯化反應文獻回顧.......23 1-3-3 油酸酯化反應機制........................................................25
第貳部分 奈米釕金屬催化硼烷氨產氫............................................27 1-4 釕奈米金屬催化硼烷氨產氫.......................................................27 1-4-1 硼烷氨水解產氫............................................................27 1-4-2 奈米金屬粒子對硼烷氨水解脫氫之文獻 ...................28 1-4-3 金屬催化硼烷氨水解脫氫的反應機制圖 ...................33 1-5 研究動機與目的...........................................................................34 2 第二章 實驗部分 ................................................................................35 2-1 實驗藥品.......................................................................................35 2-1-1 第壹部分所使用之藥品................................................35 2-1-2 第貳部分所使用之藥品................................................37 2-2 實驗設備.......................................................................................38
VI

2-2-1 實驗合成設備................................................................38
2-2-2 實驗鑑定儀器................................................................38 2-3 儀器鑑定之原理...........................................................................40 2-3-1 同步輻射中心光束線(NSRRC)....................................40 2-3-2 氮氣吸附脫附儀 (ASAP).............................................43 2-3-3 掃描式電子顯微鏡 (SEM)...........................................46 2-3-4 穿透式電子顯微鏡 (TEM) ..........................................48 2-3-5 粉末 X 光繞射儀 (PXRD) ...........................................49 2-3-6 高解析感應耦合電將質譜分析(ICP-MS)...................50 2-3-7 光電子能譜 (XPS)........................................................51 2-3-8 傅立葉紅外線吸收光譜儀 (FTIR)..............................52 2-3-9 固態核磁共振 (Solid State NMR) ...............................53 2-3-10 元素分析儀 (EA)........................................................57 2-3-11 超導量子干涉磁化儀 (SQUID).................................58 2-3-12 氣相層析儀 (GC) .......................................................59 2-3-13 熱重分析儀 (TGA).....................................................61 2-4 實驗步驟.......................................................................................62 第壹部分 具磺酸官中孔洞矽材催化油酸(OA)為油酸甲酯(MO) ..62
VII

2-4-1 合成具酸性官能基之 K6SX.........................................62 2-4-2 以硫酸溶液裂解孔洞中模板........................................63 2-4-3 催化油酸為油酸甲酯實驗............................................64
第貳部分 奈米釕金屬催化硼烷氨產氫............................................67 2-4-4 合成具有磁性的孔洞材料 Y wt.%Fe3O4@SiO2@KIT-6 ...................................................................................................67 2-4-5 合成釕奈米金屬於磁性材料中 Ru(X)/20wt.% Fe3O4@SiO2@KIT-6 ................................................................69 2-4-6 材料進行硼烷氨催化水解產氫....................................71
3 第三章 結果與討論............................................................................75 第壹部分 具磺酸官能基中孔洞矽材催化油酸為油酸甲酯............75 3-1 材料鑑定.....................................................................................75
3-1-1 小角度 X 光繞射圖 (SAXRD) ....................................75 3-1-2 氮氣吸脫附鑑定 (BET)...............................................78 3-1-3 傅立葉轉換紅外線光譜儀 (FTIR)..............................80 3-1-4 Solid NMR ......................................................................81 3-1-5 元素分析 (EA)..............................................................86 3-1-6 掃描式電子顯微鏡 (SEM)...........................................87
VIII

3-1-7 穿透式電子顯微鏡 (TEM) ..........................................89 3-1-8 光電子能譜 (XPS)........................................................92 3-1-9 熱重分析(TGA).............................................................95
3-2 催化油酸為油酸甲酯實驗.........................................................96 3-2-1 K6SX 催化油酸酯化反應..............................................96 3-2-2 K6Y10 催化油酸酯化反應............................................98 3-2-3 不同比例起始物對MO產率之影響.........................100 3-2-4 不同比例催化劑對MO產率之影響.........................102 3-2-5 不同反應溫度對MO產率之影響.............................104 3-2-6 K6S10 催化油酸為油酸甲酯重複使用實驗 ..............107
第貳部分 奈米釕金屬催化硼烷氨產氫..........................................115 3-3 材料鑑定...................................................................................115 3-3-1 小角度 X 光繞射圖 (SAXRD) ..................................115 3-3-2 大角度 X 光繞射圖 (WAXRD) .................................117 3-3-3 等溫氮氣吸脫附鑑定 (BET).....................................119 3-3-4 掃描式電子顯微鏡 (SEM).........................................122 3-3-5 穿透式電子顯微鏡 (TEM) ........................................126 3-3-6 光電子能譜 (XPS)......................................................132
IX

3-3-7 感應耦合電漿質譜儀 (ICP-MS)................................134
3-3-8 磁性鑑定 (SQUID).....................................................136 3-4 奈米釕金屬催化硼烷氨產氫實驗...........................................137 3-4-1 Ru(X)/20wt.%Fe3O4@SiO2@KIT-6 催化硼烷氨水解反 應.............................................................................................138 3-4-2 Ru(2)/Y wt.%Fe3O4@SiO2@KIT-6 催化硼烷氨水解反應 .................................................................................................140 3-4-3 不同材料對催化硼烷氨水解反應..............................142 3-4-4 不同M/AB比例對硼烷氨水解反應之比較.............144 3-4-5 不同比例 NaOH 促進劑對硼烷氨水解反應之比較.146 3-4-6 不同溫度對硼烷氨水解反應......................................148 3-4-7 Ru(2)/10%Fe3O4@SiO2@KIT-6 對硼烷氨製氫重複利用 之反應 ....................................................................................152 第四章 結論...........................................................................................157 第五章 參考文獻..................................................................................158
參考文獻 1. He, Y.; Li, Z.; Ding, X.; Xu, B.; Wang, J.; Li, Y.; Chen, F.; Meng, F.; Song, W.; Zhang, Y., Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioactive Materials 2022, 8, 109-123.
2. Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli- Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society 2003, 125 (15), 4451-4459.
3. Budi, C. S.; Deka, J. R.; Saikia, D.; Kao, H.-M.; Yang, Y.-C., Ultrafine bimetallic Ag-doped Ni nanoparticles embedded in cage-type mesoporous silica SBA-16 as superior catalysts for conversion of toxic nitroaromatic compounds. Journal of Hazardous Materials 2020, 384, 121270.
4. Rao, N.; Wang, M.; Shang, Z.; Hou, Y.; Fan, G.; Li, J., CO2 Adsorption by Amine-Functionalized MCM-41: A Comparison between Impregnation and Grafting Modification Methods. Energy & Fuels 2018, 32 (1), 670-677.
5. Deka, J. R.; Saikia, D.; Chen, P.-H.; Chen, K.-T.; Kao, H.-M.; Yang, Y.-C., N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. Journal of Industrial and Engineering Chemistry 2021, 104, 529-543.
6. Sivamaruthi, B. S.; Thangaleela, S.; Kesika, P.; Suganthy, N.; Chaiyasut, C. Mesoporous Silica-Based Nanoplatforms Are Theranostic Agents for the Treatment of Inflammatory Disorders Pharmaceutics [Online], 2023.
7. Chen, W.; Glackin, C. A.; Horwitz, M. A.; Zink, J. I., Nanomachines and Other Caps on Mesoporous Silica Nanoparticles for Drug Delivery. Accounts of Chemical Research 2019, 52 (6), 1531-1542.
8. Yang, B.; Chen, Y.; Shi, J., Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews 2019, 119 (8), 4881-4985.
9. Wu, S.-H., Mou, C.-Y., & Lin, H.-P. , Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews (2013), 42(9), 3862.
10. Matharu, Z.; Daggumati, P.; Wang, L.; Dorofeeva, T. S.; Li, Z.; Seker, E., Nanoporous-Gold-Based Electrode Morphology Libraries for Investigating Structure–Property Relationships in Nucleic Acid Based Electrochemical Biosensors. ACS Applied Materials & Interfaces 2017, 9 (15), 12959-12966.
11. Duan, L.; Wang, C.; Zhang, W.; Ma, B.; Deng, Y.; Li, W.; Zhao, D., Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews 2021, 121 (23), 14349-14429.
12. Ghaedi, H.; Zhao, M., Review on Template Removal Techniques for Synthesis of Mesoporous Silica Materials. Energy & Fuels 2022, 36 (5), 2424-2446.
13. Kankala, R. K.; Han, Y.-H.; Xia, H.-Y.; Wang, S.-B.; Chen, A.- Z., Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. Journal of Nanobiotechnology 2022, 20 (1), 126.
14. Zhao, X. S.; Lu, G. Q.; Millar, G. J., Advances in Mesoporous Molecular Sieve MCM-41. Industrial & Engineering Chemistry Research 1996, 35 (7), 2075-2090.
15. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710-712.
16. Bouchoucha, M.; Côté, M.-F.; C.-Gaudreault, R.; Fortin, M.-A.; Kleitz, F., Size-Controlled Functionalized Mesoporous Silica Nanoparticles for Tunable Drug Release and Enhanced Anti-Tumoral Activity. Chemistry of Materials 2016, 28 (12), 4243-4258.
17. Hao, N.; Li, L.; Tang, F., Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews 2017, 62 (2), 57-77.
18. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
19. Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F., Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science 1993, 261 (5126), 1299-1303.
20. Yang, K. N.; Zhang, C. Q.; Wang, W.; Wang, P. C.; Zhou, J. P.; Liang, X. J., pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer biology & medicine 2014, 11 (1), 34-43.
21. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie (International ed. in English) 2006, 45, 3216-51.
22. Li, W.; Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chemical Communications 2013, 49 (10), 943-946.
23. Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R., MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure: Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. Journal of the American Chemical Society 2005, 127 (20), 7601-7610.
24. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self- assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72 (0), 1525-1568.
25. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
26. Soler-Illia, G. J. d. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J., Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Reviews 2002, 102 (11), 4093-4138.
27. Richtering, W., The Colloidal Domain – where physics, chemistry, biology and technology meet. 2001, 11 (4), 177-177.
28. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317-321.
29. Kleitz,F.; Choi,S.H.;Ryoo,R.,CubicIa3dlargemesoporoussilica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical communications (Cambridge, England) 2003, (17), 2136-7.
30. Almar, L.; Colldeforns, B.; Yedra, L.; Estradé, S.; Peiró, F.; Morata, A.; Andreu, T.; Tarancón, A., High-Temperature Long-Term Stable Ordered Mesoporous Ni–CGO as an Anode for Solid Oxide Fuel Cells. Journal of Materials Chemistry A 2013, 1, 4531-4538.
31. Steel, A.; Carr, S. W.; Anderson, M. W., 29Si solid-state NMR study of mesoporous M41S materials. Chemistry of Materials 1995, 7 (10), 1829- 1832.
32. Mercier, L.; Pinnavaia, T. J., Heavy Metal Ion Adsorbents Formed by the Grafting of a Thiol Functionality to Mesoporous Silica Molecular Sieves: Factors Affecting Hg(II) Uptake. Environmental Science & Technology 1998, 32 (18), 2749-2754.
33. Ho, K. Y.; McKay, G.; Yeung, K. L., Selective Adsorbents from Ordered Mesoporous Silica. Langmuir 2003, 19 (7), 3019-3024.
34. Burkett, S. L.; Sims, S. D.; Mann, S., Synthesis of hybrid inorganic– organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chemical Communications 1996, (11), 1367- 1368.
35. Macquarrie, D. J., Direct preparation of organically modified MCM- type materials. Preparation and characterisation of aminopropyl–MCM and 2-cyanoethyl–MCM. Chemical Communications 1996, (16), 1961-1962. 36. Melde,B.J.; Holland,B.T.; Blanford,C.F.;Stein,A.,Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials 1999, 11 (11), 3302-3308.
37. Walcarius, A.; Delacôte, C., Rate of Access to the Binding Sites in Organically Modified Silicates. 3. Effect of Structure and Density of Functional Groups in Mesoporous Solids Obtained by the Co- Condensation Route. Chemistry of Materials 2003, 15 (22), 4181-4192. 38. Yokoi, T.; Yoshitake, H.; Tatsumi, T., Synthesis of amino- functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. Journal of Materials Chemistry 2004, 14 (6), 951-957.
39. Mercier, L.; Pinnavaia, T. J., Direct Synthesis of Hybrid Organic−Inorganic Nanoporous Silica by a Neutral Amine Assembly Route: Structure−Function Control by Stoichiometric Incorporation of Organosiloxane Molecules. Chemistry of Materials 2000, 12 (1), 188-196.
40. Duan, Y.; Zheng, M.; Li, D.; Deng, D.; Wu, C.; Yang, Y., Synthesis of Pd/SBA-15 catalyst employing surface-bonded vinyl as a reductant and its application in the hydrogenation of nitroarenes. RSC Advances 2017, 7 (6), 3443-3449.
41. Trébosc, J.; Wiench, J. W.; Huh, S.; Lin, V. S. Y.; Pruski, M., Solid-State NMR Study of MCM-41-type Mesoporous Silica Nanoparticles. Journal of the American Chemical Society 2005, 127 (9), 3057-3068.
42. Chircov, C.; Spoială, A.; Păun, C.; Crăciun, L.; Ficai, D.; Ficai, A.; Andronescu, E.; Turculeƫ, Ș. C. Mesoporous Silica Platforms with Potential Applications in Release and Adsorption of Active Agents Molecules [Online], 2020.
43. Harmer, M. A.; Farneth, W. E.; Sun, Q., High Surface Area Nafion Resin/Silica Nanocomposites: A New Class of Solid Acid Catalyst. Journal of the American Chemical Society 1996, 118 (33), 7708-7715.
44. M. Van Rhijn, W.; E. De Vos, D.; F. Sels, B.; D. Bossaert, W., Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chemical Communications 1998, (3), 317-318.
45. Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D., Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chemistry of Materials 2000, 12 (8), 2448-2459.
46. Melero, J. A.; van Grieken, R.; Morales, G., Advances in the Synthesis and Catalytic Applications of Organosulfonic-Functionalized Mesostructured Materials. Chemical Reviews 2006, 106 (9), 3790-3812. 47. Sasidharan, M.; Bhaumik, A., Novel and Mild Synthetic Strategy for the Sulfonic Acid Functionalization in Periodic Mesoporous Ethenylene- Silica. ACS Applied Materials & Interfaces 2013, 5 (7), 2618-2625.
48. Paniagua, M.; Cuevas, F.; Morales, G.; Melero, J. A., Sulfonic Mesostructured SBA-15 Silicas for the Solvent-Free Production of Bio-Jet Fuel Precursors via Aldol Dimerization of Levulinic Acid. ACS Sustainable Chemistry & Engineering 2021, 9 (17), 5952-5962.
49. Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J., Entrapping Enzyme in a Functionalized Nanoporous Support. Journal of the American Chemical Society 2002, 124 (38), 11242-11243.
50. Liu, N.; Assink, R. A.; Brinker, C. J., Synthesis and characterization of highly ordered mesoporous thin films with –COOH terminated pore surfaces. Chemical Communications 2003, (3), 370-371.
51. Yang, C.-m.; Zibrowius, B.; Schüth, F., A novel synthetic route for negatively charged ordered mesoporous silica SBA-15. Chemical Communications 2003, (14), 1772-1773.
52. Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S., Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures. Journal of Materials Chemistry 2007, 17 (12), 1216-1221.
53. Tsai, C.-T.; Pan, Y.-C.; Ting, C.-C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H.-M., A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups. Chemical Communications 2009, (33), 5018- 5020.
54. Tsai, C.-H.; Chang, W.-C.; Saikia, D.; Wu, C.-E.; Kao, H.-M., Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. Journal of Hazardous Materials 2016, 309, 236-248.
55. Deka, J. R.; Saikia, D.; Hsia, K.-S.; Kao, H.-M.; Yang, Y.-C.; Chen, C.-S. Ru Nanoparticles Embedded in Cubic Mesoporous Silica SBA-1 as Highly Efficient Catalysts for Hydrogen Generation from Ammonia Borane Catalysts [Online], 2020.
56. Deka, J. R.; Saikia, D.; Lu, N.-F.; Chen, K.-T.; Kao, H.-M.; Yang, Y.-C., Space confined synthesis of highly dispersed bimetallic CoCu nanoparticles as effective catalysts for ammonia borane dehydrogenation and 4-nitrophenol reduction. Applied Surface Science 2021, 538, 148091. 57. Marchetti, J. M.; Errazu, A. F., Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass and Bioenergy 2008, 32 (9), 892-895.
58. Berrios, M.; Siles, J.; Martín, M. A.; Martín, A., A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil. Fuel 2007, 86 (15), 2383-2388.
59. Pirez, C.; Caderon, J.-M.; Dacquin, J.-P.; Lee, A. F.; Wilson, K., Tunable KIT-6 Mesoporous Sulfonic Acid Catalysts for Fatty Acid Esterification. ACS Catalysis 2012, 2 (8), 1607-1614.
60. Wang, Y.; Wang, D.; Tan, M.; Jiang, B.; Zheng, J.; Tsubaki, N.; Wu, M., Monodispersed Hollow SO3H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid. ACS Applied Materials & Interfaces 2015, 7 (48), 26767-26775.
61. Masteri-Farahani, M.; Hosseini, M.-S.; Forouzeshfar, N., Propyl- SO3H functionalized graphene oxide as multipurpose solid acid catalyst for biodiesel synthesis and acid-catalyzed esterification and acetalization reactions. Renewable Energy 2020, 151, 1092-1101.
62. Chandra, M.; Xu, Q., A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia– borane. Journal of Power Sources 2006, 156 (2), 190-194.
63. Chandra, M.; Xu, Q., Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. Journal of Power Sources 2007, 168 (1), 135-142.
64. Akbayrak, S.; Özkar, S., Ruthenium(0) Nanoparticles Supported on Multiwalled Carbon Nanotube As Highly Active Catalyst for Hydrogen Generation from Ammonia–Borane. ACS Applied Materials & Interfaces 2012, 4 (11), 6302-6310.
65. Yao, Q.; Shi, W.; Feng, G.; Lu, Z.-H.; Zhang, X.; Tao, D.; Kong, D.; Chen, X., Ultrafine Ru nanoparticles embedded in SiO2 nanospheres: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Journal of Power Sources 2014, 257, 293-299.
66. Yao, Q.; Lu, Z.-H.; Yang, K.; Chen, X.; Zhu, M., Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Scientific Reports 2015, 5 (1), 15186.
67. Taşçı, E.; Akbayrak, S.; Özkar, S., Ruthenium(0) nanoparticles supported on silica coated Fe3O4 as magnetically separable catalysts for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 2018, 43 (32), 15124-15134.
68. Xu, Q.; Chandra, M., Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature. Journal of Power Sources 2006, 163 (1), 364-370.
69. Amin, R.; Khorshidi, A.; Shojaei, A. F.; Rezaei, S.; Faramarzi, M. A., Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio- waste. International Journal of Biological Macromolecules 2018, 114, 106-113.
70. Khabazipour, M.; Shariati, S.; Safa, F., SBA and KIT-6 Mesoporous Silica Magnetite Nanoparticles: Synthesis and Characterization. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2016, 46 (5), 759-765.
71. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources 2013, 243, 431-435.
72. Chandra, M.; Xu, Q., Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system. Journal of Power Sources 2006, 159 (2), 855-860.
73. Dacquin, J. P.; Lee, A. F.; Pirez, C.; Wilson, K., Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis. Chemical Communications 2012, 48 (2), 212-214.
74. Peng, L.; Philippaerts, A.; Ke, X.; Van Noyen, J.; De Clippel, F.; Van Tendeloo, G.; Jacobs, P. A.; Sels, B. F., Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today 2010, 150 (1), 140-146.
75. Liu, R.; Wang, X.; Zhao, X.; Feng, P., Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. Carbon 2008, 46 (13), 1664-1669.
76. Vieira, S. S.; Magriotis, Z. M.; Ribeiro, M. F.; Graça, I.; Fernandes, A.; Lopes, J. M. F. M.; Coelho, S. M.; Santos, N. A. V.; Saczk, A. A., Use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Microporous and Mesoporous Materials 2015, 201, 160-168.
77. Balan, W. S.; Janaun, J.; Chung, C. H.; Semilin, V.; Zhu, Z.; Haywood, S. K.; Touhami, D.; Chong, K. P.; Yaser, A. Z.; Lee, P. C.; Zein, S. H., Esterification of residual palm oil using solid acid catalyst derived from rice husk. Journal of Hazardous Materials 2021, 404, 124092. 78. Tamborini, L. H.; Militello, M. P.; Balach, J.; Moyano, J. M.; Barbero, C. A.; Acevedo, D. F., Application of sulfonated nanoporous carbons as acid catalysts for Fischer esterification reactions. Arabian Journal of Chemistry 2019, 12 (8), 3172-3182.
79. Cui, C.; Liu, Y.; Mehdi, S.; Wen, H.; Zhou, B.; Li, J.; Li, B., Enhancing effect of Fe-doping on the activity of nano Ni catalyst towards hydrogen evolution from NH3BH3. Applied Catalysis B: Environmental 2020, 265, 118612.
80. Wei, Z.; Liu, Y.; Peng, Z.; Song, H.; Liu, Z.; Liu, B.; Li, B.; Yang, B.; Lu, S., Cobalt-Ruthenium Nanoalloys Parceled in Porous Nitrogen-Doped Graphene as Highly Efficient Difunctional Catalysts for Hydrogen Evolution Reaction and Hydrolysis of Ammonia Borane. ACS Sustainable Chemistry & Engineering 2019, 7 (7), 7014-7023.
81. Fu, F.;
Escobar, A.;
Fouquet, E.;
type Synergistic Ni2Pt@ZIF-8-Catalyzed Hydrogen Evolution from Ammonia Borane Hydrolysis. Journal of the American Chemical Society 2018, 140 (31), 10034-10042.
Wang, C.; Wang, Q.; Martinez-Villacorta, A. M.; Chong, H.; Wang, X.; Moya, S.; Salmon, L.; Ruiz, J.; Astruc, D., Highly Selective and Sharp Volcano-
82. Fu, Z.-C.; Xu, Y.; Chan, S. L.-F.; Wang, W.-W.; Li, F.; Liang, F.; Chen, Y.; Lin, Z.-S.; Fu, W.-F.; Che, C.-M., Highly efficient hydrolysis of ammonia borane by anion (−OH, F−, Cl−)-tuned interactions between reactant molecules and CoP nanoparticles. Chemical Communications 2017, 53 (4), 705-708.
83. Zheng, H.; Feng, K.; Shang, Y.; Kang, Z.; Sun, X.; Zhong, J., Cube-like CuCoO nanostructures on reduced graphene oxide for H2 generation from ammonia borane. Inorganic Chemistry Frontiers 2018, 5 (5), 1180-1187.
84. Li, S.-H.; Song, X.-R.; Li, Y.-T.; Zhao, Y.-Q.; Zheng, X.-C., Efficient hydrolytic dehydrogenation of ammonia borane over ultrafine Ru nanoparticles supported on biomass-derived porous carbon. International Journal of Hydrogen Energy 2021, 46 (54), 27555-27566.
85. Cui, Z.; Guo, Y.; Feng, Z.; Xu, D.; Ma, J., Ruthenium nanoparticles supported on nitrogen-doped porous carbon as a highly efficient catalyst for hydrogen evolution from ammonia borane. New Journal of Chemistry 2019, 43 (11), 4377-4384.
86. Cao, N.; Luo, W.; Cheng, G., One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 2013, 38 (27), 11964-11972.
87. Zahmakiran, M., Preparation and characterization of LTA-type zeolite framework dispersed ruthenium nanoparticles and their catalytic application in the hydrolytic dehydrogenation of ammonia–borane for efficient hydrogen generation. Materials Science and Engineering: B 2012, 177 (8), 606-613.
88. Mori, K.; Miyawaki, K.; Yamashita, H., Ru and Ru–Ni Nanoparticles on TiO2 Support as Extremely Active Catalysts for Hydrogen Production from Ammonia–Borane. ACS Catalysis 2016, 6 (5), 3128-3135.
89. Tonbul, Y.; Akbayrak, S.; Özkar, S., Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane. Journal of Colloid and Interface Science 2018, 513, 287-294.
90. Zhao, W.; Wang, R.; Wang, Y.; Feng, J.; Li, C.; Chen, G., Effect of LDH composition on the catalytic activity of Ru/LDH for the hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 2019, 44 (29), 14820-14830.
91. Cao, N.; Liu, T.; Su, J.; Wu, X.; Luo, W.; Cheng, G., Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes. New Journal of Chemistry 2014, 38 (9), 4032-4035.
92. Wen, L.; Su, J.; Wu, X.; Cai, P.; Luo, W.; Cheng, G., Ruthenium supported on MIL-96: An efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. International Journal of Hydrogen Energy 2014, 39 (30), 17129-17135.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明