摘要(英) |
WMA, or Warm Mix Asphalt, is highly regarded for its energy-saving benefits and reduced emissions of smoke and gases, creating a better working environment for construction teams and laboratory professionals. The technology achieves this by lowering the temperatures at which asphalt mixtures are
mixed and compacted, resulting in decreased greenhouse gas emissions. Globally, WMA is widely embraced for its positive environmental impact, and its characteristics do not compromise the inherent performance and subsequent quality of asphalt mixtures. This study was undertaken against the
backdrop of growing concerns about environmental issues. Its primary objective is to investigate the distinctions in materials and performance between WMA additives and traditional Hot Mix Asphalt (HMA) in a laboratory setting. Three warm mix additives were employed, and Marshall design methods were applied according to specified design rules. Both four-inch and six-inch specimens were utilized to compare and analyze volume properties, including void content and VMA. The study evaluated the influence of warm mix additives on WMA performance and compared it with HMA to comprehend the variances and impacts. Furthermore, the study delved into the practicality and effectiveness of WMA through retention strength tests and Hamburg Wheel-Tracking Tests.
Results from this research demonstrate that all three additives contribute to enhancing low temperature performance in testing while ensuring effective coverage of aggregate asphalt and optimal mixing. At a temperature of 128 degrees, the performance of these additives is comparable to HMA,showcasing similar compaction processing characteristics of WMA. Performance test results indicate
that WMA meets or surpasses standards in coating,compaction , moisture sensitivity, and rutting resistance, displaying consistent performance across various parameters. In summary, the application of chemical additives in WMA, as evidenced by various laboratory tests, plays a pivotal role in enhancing the overall performance of WMA, meriting further in-depth research. |
參考文獻 |
1.Abdalrhman MiladA, (2022) Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement
2.Joe W. Button, Cindy Estakhri, and Andrew Wimsatt,(2007), A SYNTHESIS OF WARM-MIX ASPHALT, pp. 3-29
3.Arif Chowdhury and Joe W. Button, (2008) A Review of Warm Mix Asphalt, pp. 1-16
4.Anda Ligia Belc, Erdem Coleri, Florin Belc and Ciprian Costescu, (2021) Influence of Different Warm Mix Additives on Characteristics of Warm Mix Asphalt
5.Amir Golalipoura, Ehsan Jamshidib , Yunus Niazic, Zahra Afsharikiad, Mahmood Khademe, (2012) Effect of Aggregate Gradation on Rutting of Asphalt Pavements
6.Asphalt in Figures – provisional Figures, EAPA (2021)
7.Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage (Information Series 138) 10th Annual Survey (2019)
8.Feipeng Xiao, Serji N. Amirkhanian, and Bradley J. (2002) Putman,Evaluation of Rutting Resistance in Warm-Mix Asphalts Containing Moist Aggregate
9.Federal Highway Administration, FHWA (2013)
10.Ivan Syed, Md Amanul Hasan and Rafiqul A. Tarefder , (2017) INVESTIGATION OF RUTTING PERFORMANCE OF DIFFERENT WARM MIX ASPHALT (WMA) MIXTURES
11.John D’Angelo, Eric Harm, John Bartoszek, Gaylon Baumgardner, Matthew Corrigan, Jack Cowsert, Thomas Harman, Mostafa Jamshidi, Wayne Jones, Dave Newcomb, Brian Prowell, Ron Sines, and Bruce Yeaton, (2008) Warm-Mix Asphalt: European Practice, pp. 5-24
12.Mahmoud Ameri, Sepehr V. Abdipour, Arash Rahimi Yengejeh, Masoud Shahsavari & Afshar A. Yousefi, (2022) Evaluation of rubberised asphalt mixture including natural Zeolite as a warm mix asphalt WMA additive
13.NCHRP REPORT691, Mix Design Practices for Warm Mix Asphalt (2011), pp. 8-22
14.NCHRP REPORT843, Long-Term Field Performance of Warm Mix Asphalt Technologies (2017)
15.Paolino Caputo, Abraham A. Abe, Valeria Loise, Michele Porto, Pietro Calandra, Ruggero Angelico, and Cesare Oliviero Rossi, (2020) The Role of Additives in Warm Mix Asphalt Technology: An Insight into Their Mechanisms of Improving an Emerging Technology
16.Ramadan Salim, Akshay Gundla, Ali Zalghout , B. Shane Underwood , and Kamil E. Kaloush,Relationship , (2019) between Asphalt Binder Parameters and Asphalt Mixture Rutting
17.Shenghua Wu a, Omar Tahri a, Shihui Shen b, Weiguang Zhang c , Balasingam Muhunthan d,Environmental (2020) impact evaluation and long-term rutting resistance performance of warm mix asphalt technologies
18.Süleyman Nurullah Adahi, Şahin, (2023) Investigation of the Effects of Additives used in Reducing Asphalt Production Temperatures, Vol. 31, No. 1, 34-44
19.The use of warm mix asphalt, EAPA (2014) ,pp. 15-43
20.Vikas Kumar, (2023) Strategies to Improve Density and Moisture Resistance of Asphalt Mixtures in Oregon.
21.Zycotherm(Anti-Strip & Warm Mix Additive (2021) |