摘要(英) |
The durability and service life of bridges are closely related to environmental corrosion factors, so various units attach great importance to the service life and safety issues of bridges, especially coastal bridges, which are more susceptible to environmental influences leading to deterioration and defects. Therefore, when considering the environment, location, and causes of corrosion of bridges, special caution is required.
Taiwan′s coastal steel bridges are exposed to highly corrosive environments for extended periods, with high salt deposition, and most are located near industrial areas, making them often subject to corrosion environments of C5 grade or higher. In order to reduce future maintenance costs and minimize the impact of corrosion on bridges, in-depth research and discussion on anti-corrosion coating materials, construction methods, and maintenance management systems for steel bridges are necessary.
This study takes the maintenance project of the Rainbow Bridge in the Dayuan District as an example, exploring the relevant construction methods and maintenance management practices for C5 grade or higher bridge painting maintenance in the planning and design stage, construction and painting stage, and future maintenance stage, in order to extend the service life of the steel bridge.
The Rainbow Bridge in Dayuan District is maintained by using a 30000PSI water jet for rust removal, followed by a 6-layer painting process (first coat of primer, second coat of primer, first coat of intermediate paint, second coat of intermediate paint, first coat of topcoat, second coat of topcoat). Before painting, the surface is cleaned with a 5000PSI water jet, and inspections are carried out to ensure the quality of the painting, including checking water jet pressure, environmental temperature and humidity, salt content, adhesion, etc. It is recommended to regularly clean the bridge during the maintenance phase to reduce the deposition of corrosive factors such as salt on the bridge structure, thereby reducing the possibility of corrosion and improving the durability of the bridge. |
參考文獻 |
ASTM D610-08. (2019). Standard Test Method for Evaluating Degree of Rusting on Painted Steel Surfaces.
[2] CNS13401. (2019年10月). 金屬及合金之腐蝕-大氣腐蝕性-分級、測定與評估. 台北市.
[3] CNS15200-8-3. (2013年1月). 塗料一般試驗法-第8-3部:塗膜劣化評估-銹蝕等級. 台北市.
[4] ISO12944. (2017年11月). Corrosion Protection of Steel Structures by Protective Paint Systems.
[5] ISO4628-1. (2016). Paints and varnishes — Evaluation of degradation of coatings —Designation of quantity and size of defects, and of intensity of uniform changes in appearance —.
[6] 中央氣象局. (2023). 歷史資料. 擷取自 https://www.cwa.gov.tw/V8/C/
[7] 中國國家材料腐蝕與防護科學數據中心. (2021). 鋼材生鏽怎麼分級?又如何除鏽?
[8] 內政部. (2007). 鋼結構建築防鏽工法之研究. 台北市.
[9] 內政部. (2018). 鋼構造建築物鋼結構施工規範. 台北市.
[10] 公共工程委員會. (2007). 施工規範第09972章鋼橋油漆.
[11] 公共工程委員會. (2017). 施工規範第09910章油漆.
[12] 王韻瑾, & 黃冠嘉. (2014年9月). 台 61 線林口高架橋鋼梁保護材料及腐蝕評估分析. 臺灣公路工程, 頁 第 40 卷第 9 期.
[13] 台創工程技術顧問有限公司. (2023年10月). 112年度桃園市橋梁檢測專業服務案(北區)【彩虹橋】特殊橋維護管理計畫.
[14] 永記造漆工業股份有限公司. (2023). 鋼鐵處理標準與塗裝. 擷取自 https://www.rainbowpaint.com.tw/
[15] 交通部. (2018). 公路橋梁檢測及補強規範. 台北市: 交通部.
[16] 交通部公路局. (2023). 車行橋梁管理資訊系統. 擷取自 車行橋梁管理資訊系統: https://bms2.iot.gov.tw/bms3/public/inventory/hsien/en,tyh/
[17] 佺葉工程顧問有限公司. (2019年12月). 108年度桃園市區道路橋梁檢測及巡查(第二工區)-大園區彩虹橋詳細檢測報告. 桃園市.
[18] 佺葉工程顧問有限公司. (2019年12月). 110 年度桃園市橋梁檢測專業服務案(北區) -彩虹橋維護管理計畫. 桃園市.
[19] 姚乃嘉, 楊智斌, & 蔡閔光等. (2018). 第二代臺灣地區橋梁管理資訊系統建置規劃. 台北市: 交通部運輸研究所.
[20] 柏林股份有限公司. (2016). 柏林-錏膜可塗A-590環氧柏油漆.
[21] 柏林股份有限公司. (2022年3月8日). 旺氟龍可塗中塗漆F-2000U. 擷取自 https://berlinpaint.com/
[22] 柏林股份有限公司. (2022年3月8日). 旺氟龍可塗⾯漆F-2000. 擷取自 https://berlinpaint.com/
[23] 柏林股份有限公司. (2022年2月23日). 柏林-錏膜可塗A-448E⾼固型份環氧樹脂塗料. 擷取自 https://berlinpaint.com/
[24] 柏林股份有限公司. (2022年9月6日). 柏林-錏膜可塗A-747ZN耐濕氣環氧樹脂鋅粉底漆. 擷取自 https://berlinpaint.com/
[25] 黃冠嘉. (2015). 濱海橋梁維護工法及技術之研究-以林口高架橋為例. 桃園市: 國立中央大學土木工程研究所碩士論文.
[26] 經濟部水利署水文資訊網整合服務系統. (2023). 水文資料. 擷取自 https://gweb.wra.gov.tw/Hydroinfo/?id=Index |