博碩士論文 110223010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.21.233.41
姓名 黃怡璇(Yi-Xuan Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 設計與合成鄰苯二甲酰亞胺及芳基連接雙-β-二酮之衍生物作為電動傳輸材料並探討其在反式鈣鈦礦太陽能電池的界面交互作用
(Design and Synthesis of Phthalimide and Aryl-linked Bis-β-diketone Derivatives as Hole Transporting Materials to Explore Their Interfacial Interactions in Inverted Perovskite Solar Cells)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 近幾年來,有機材料的太陽能電池,如染料敏化太陽能電池 (DSSCs)、有機光伏 (OPVs) 和鈣鈦礦太陽能電池 (PSCs),其發展受到了廣泛的關注和重視。尤其又以鈣鈦礦太陽能電池作為當今一種備受矚目的新型太陽能電池,隨著科學家們的不懈努力下,其能量轉換效率在 2009 年至 2023 年的短短十幾年間從最初的約 3.9% 提升至 26.0%,展現出巨大的潛力。在提高鈣鈦礦太陽能電池元件性能方面,電洞傳輸材料起著不可或缺的重要作用。
本篇研究旨在合成兩個不同系列的電洞傳輸材料。第一系列的分子設計主要是以 Phthalimide 作為 Acceptor,通過在 Phthalimide 的間位連接兩個 Triphenylamine 作為 Donor,並分別接上具有不同官能基的長烷基作為錨定基團,從而合成出具有 D-A 結構的 PA 系列分子。第二系列的分子設計主要是以不同的雜環芳基作為中心分子 Acceptor,並通過連接 β-二酮作為延伸核心的 π-共軛,接著在兩端接上 Triphenylamine 作為 Donor,從而合成出具有 D-A-D 結構的 DK 系列分子。將這兩種系列的化合物作為電洞傳輸材料應用於反式鈣鈦礦太陽能電池中。
摘要(英) In recent years, organic materials-based solar cells, such as dye-sensitized solar cells (DSSCs), organic photovoltaics (OPVs), and perovskite solar cells (PSCs), have garnered widespread attention and importance in the field of renewable energy research. Among these, perovskite solar cells have emerged as a highly promising and sought-after new generation of solar cells. The continuous efforts of scientists have resulted in a remarkable increase in their energy conversion efficiency from approximately 3.9% in 2009 to an impressive 26.0% by 2023, showcasing their immense potential as a viable alternative for clean energy production.
Crucial to enhancing the performance of perovskite solar cells are hole-transporting materials, which play an indispensable role in facilitating efficient charge transport and extraction within the device structure. To this end, the current research endeavors to design and synthesize two distinct series of hole-transporting materials.
The first series focuses on utilizing Phthalimide as the acceptor moiety, strategically connected to two Triphenylamine donor groups via the meta position of Phthalimide. Additionally, long alkyl chains with diverse functional groups are employed as anchoring units to optimize the molecular structure. The resultant PA series molecules possess a donor-acceptor (D-A) architecture, specifically tailored to enhance charge mobility and facilitate hole transfer in perovskite solar cells.
On the other hand, the second series is designed around different heteroaromatic groups serving as the central acceptor unit. These acceptor units are conjugated with a β-diketone core, providing extended π-conjugation to enhance electronic communication. Triphenylamine is introduced at both ends of the molecular structure as the donor. The synthesized DK series molecules exhibit a donor-acceptor-donor (D-A-D) configuration, optimized to facilitate efficient charge transfer and transport within the perovskite solar cell architecture.
Both series of compounds are subsequently evaluated as hole-transporting materials in inverted perovskite solar cells. The comprehensive investigation aims to determine the impact of the molecular design and structural modifications on the photovoltaic performance and stability of the devices.
This research strives to contribute to the ongoing development and improvement of perovskite solar cells, potentially opening up new avenues for harnessing solar energy with enhanced efficiency and sustainability. As the world endeavors to transition towards clean and renewable energy sources, the quest for more efficient and stable photovoltaic technologies has become increasingly vital, and the development of advanced hole-transporting materials is at the forefront of these efforts.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 電動傳輸材料
關鍵字(英) ★ Perovskite Solar Cells
★ Hole Transporting Materials
論文目次 摘要 i
Abstract ii
謝誌 iv
目錄 vi
圖目錄 ix
表目錄 xii
一、緒論 1
1-1前言 1
1-2太陽能電池 6
1-3鈣鈦礦太陽能電池 8
1-3-1電池元件基本結構 11
1-3-2鈣鈦礦太陽能電池工作原理 19
1-3-3太陽能電池光伏參數 20
1-4電洞傳輸層材料之文獻回顧 23
1-4-1線型結構電洞傳輸層材料 (Linear type) 24
1-4-2星型結構電洞傳輸層材料 (Star-shape type) 32
1-4-3螺旋型結構電洞傳輸層材料 (Spiro type) 36
1-4-4不對稱型結構電洞傳輸層材料 (Asymmetric type) 38
1-5自組裝單層膜 (Self-Assembled Monolayers, SAMs) 40
1-5-1 SAMs 之基本組成 41
1-5-2 SAMs 之吸附機制 42
1-5-3 SAMs 之文獻回顧 43
二、結構設計概念及動機 44
2-1 Self-Assembled 44
2-2 PA series 49
2-3 DK series 52
三、結果與討論 55
3-1 PA series 55
3-1-1合成策略 55
3-1-2密度泛函理論計算 (Density Functional Theory, DFT) 60
3-1-3光學物理性質探討 66
3-1-4電化學性質分析 69
3-1-5熱穩定性分析 73
3-2 DK series 76
3-2-1合成策略 76
3-2-2密度泛函理論計算 (Density Functional Theory, DFT) 79
四、結論及未來展望 87
4-1 PA series 87
4-2 DK series 88
五、實驗藥品、儀器及合成步驟 89
5-1實驗藥品 89
5-2實驗儀器 90
5-2-1核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 90
5-2-2超高解析質譜儀 (High Resolution Mass Spectrometer) 90
5-2-3紫外光-可見光吸收光譜儀 (UV-Vis Spectrophotometer) 91
5-2-4螢光光譜儀 (Fluorescence Spectrophotometer) 91
5-2-5電化學分析儀 (Electrochemical Analyzer) 92
5-2-6熱重分析儀 (Thermogravimetric Analyzer) 92
5-2-7融點測定器 (Melting Point Apparatus) 93
5-2-8示差掃描量熱分析儀 (Differential Scanning Calorimeter, DSC) 93
5-3實驗合成步驟及光譜數據 94
參考文獻 107
附錄 116
參考文獻 〔1〕 Yamaguchi, M.; Dimroth, F.; Geisz, J. F.; Ekins-Daukes, N. J. Ekins-Daukes.“Multi-junction solar cells paving the way for super high-efficiency.”Journal of Applied Physics. 2021, 129, 240901.
〔2〕 Ahmadpanah, F.S., Orouji, A.A. & Gharibshahian, I.“Improving the efficiency of CIGS solar cells using an optimized p-type CZTSSe electron reflector layer.”J Mater Sci: Mater Electron. 2021, 32, 22535-22547.
〔3〕 Wu, Y.; Fan, Q. P.; Fan, B. B.; Qi, F.; Wu, Z.; Lin, F. R.; Li, Y.; Lee, C. S.; Woo, H. Y.; Yip, H. L., Jen, A. K. Y.“Non-Fullerene Acceptor Doped Block Copolymer for Efficient and Stable Organic Solar Cells.”ACS Energy Lett. 2022, 7, 2196-2202.
〔4〕 Chang, P.H.; Sil, M.C.; Reddy, K.S.K.; Lin, C.H.; Chen, C.M.“Polyimide-Based Covalent Organic Framework as a Photocurrent Enhancer for Efficient Dye-Sensitized Solar Cells.”ACS Appl. Mater. Interfaces. 2022, 14, 25466-25477.
〔5〕 Kim, H.; Lim, J.; Sohail, M.; Nazeeruddin, M. K.“Superhalogen Passivation for Efficient and Stable Perovskite Solar Cells.”Sol. RRL. 2022, 6, 2200013.
〔6〕 Lu, H.; Liu, Y.; Ahlawat, P.; Mishra, A.; Tress, W. R.; Eickemeyer, F. T.; Yang, Y.; Fu, F.; Wang, Z.; Avalos, C. E.“Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells.”Science. 2020, 370, eabb8985.
〔7〕 Kim, HS., Lee, CR., Im, JH., Lee, KB., Moehl, T., Marchioro, A., Moon, SJ., Robin, HB., Yum, JH., Moser, JE., Grätzel, M., Park, NG.“Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.”Sci. Rep. 2012, 2, 591.
〔8〕 H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang.“Interface engineering of highly efficient perovskite solar cells.”Science. 2014, 345, 542-546.
〔9〕 Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I.“Impact of Strain Relaxation on Performance of α-Formamidinium Lead Iodide Perovskite Solar Cells.”Science. 2020, 370, 108-112.
〔10〕 Schulz, P.“Interface Design for Metal Halide Perovskite Solar Cells.”ACS Energy Lett. 2018, 3, 1287-1293.
〔11〕 Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G.“High-Efficiency Perovskite Solar Cells.”Chem. Rev. 2020, 120, 7867-7918.
〔12〕 Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T.“Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.”J. Am. Chem. Soc. 2009, 131, 6050-6051.
〔13〕 Meng, L.; You, J.; Guo, T. F.; Yang, Y.“Recent advances in the inverted planar structure of perovskite solar cells.”Acc. Chem. Res. 2016, 49, 155-165.
〔14〕 Wu, B.; Fu, K.; Yantara, N.; Xing, G.; Sun, S.; Sum, T. C.; Mathews, N.“Charge Accumulation and Hysteresis in Perovskite-Based Solar Cells: An Electro-Optical Analysis.”Adv. Energy Mater. 2015, 5, 1500829.
〔15〕 Nemnes, G. A.; Besleaga, C.; Stancu, V.; Dogaru, D. E.; Leonat, L. N.; Pintilie, L.; Torfason, K.; Ilkov, M.; Manolescu, A.; Pintilie, I.“Normal and Inverted Hysteresis in Perovskite Solar Cells.”J. Phys. Chem. C. 2017, 121, 11207-11214.
〔16〕 Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H.“Hysteresis-Less Inverted CH3NH3PbI3 Planar Perovskite Hybrid Solar Cells with 18.1% Power Conversion Efficiency.”Energy Environ. Sci. 2015, 8, 1602-1608.
〔17〕 Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G.“Recent progress in electron transport layers for efficient perovskite solar cells.”J. Mater. Chem. A. 2016, 4, 3970-3990.
〔18〕 Said, A. A.; Xie, J.; Zhang, Q.“Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells.”Small. 2019, 15, 1900854.
〔19〕 Noh, M. F. M.; Teh, C. H.; Daik, R.; Lim, E. L.; Yap, C. C.; Ibrahim, M. A.; Ludin, N. A.; bin Mohd Yusoff, A. R.; Jang, J.; Teridi, M. A. M.“The Architecture of the Electron Transport Layer for a Perovskite Solar Cell.”J. Mater. Chem. C. 2018, 6, 682-712.
〔20〕 Chen, J.; Kim, S.-G.; Ren, X.; Jung, H. S.; Park, N.-G.“Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells.”J. Mater. Chem. A. 2019, 7, 4977-4987.
〔21〕 T.H. Han, J.W. Lee, C. Choi, S. Tan, C. Lee, Y. Zhao, Z. Dai, N.D. Marco, S.J. Lee, S.H. Bae, Y. Yuan, H.M. Lee, Y. Huang, Y. Yang.“Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells.”Nat. Commun. 2019, 10, 520.
〔22〕 Yu, H.; Ryu, J.; Lee, J. W.; Roh, J.; Lee, K.; Yun, J.; Lee, J.; Kim, Y. K.; Hwang, D.; Kang, J.“Large Grain-Based Hole-Blocking Layer-Free Planar-Type Perovskite Solar Cell with Best Efficiency of 18.20%.”ACS Appl. Mater. Interfaces. 2017, 9, 8113-8120.
〔23〕 Liu, X.; Shi, X.; Liu, C.; Ren, Y.; Wu, Y.; Yang, W.; Alsaedi, A.; Hayat, T.; Kong, F.; Liu, X.; Ding, Y.; Yao, J.; Dai, S.“A Simple Carbazole-Triphenylamine Hole Transport Material for Perovskite Solar Cells.”J. Phys. Chem. C. 2018, 122, 26337-26343.
〔24〕 Sun, N.; Gao, W.; Dong, H.; Liu, Y.; Liu, X.; Wu, Z.; Song, L.; Ran, C.; Chen, Y.“Architecture of p-i-n Sn-Based Perovskite Solar Cells: Characteristics, Advances, and Perspectives.”ACS Energy Lett. 2021, 6, 2863-2875.
〔25〕 Shao, S.; Liu, J.; Portale, G.; Fang, H.-H.; Blake, G. R.; ten Brink, G. H.; Koster, L. J. A.; Loi, M. A.“Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency.”Adv. Energy Mater. 2018, 8, 1702019.
〔26〕 Han, G. S.; Kim, J.; Bae, S.; Han, S.; Kim, Y. J.; Gong, O. Y.; Lee, P.; Ko, M. J.; Jung, H. S.“Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by Self-Assembly of SnO2 Nanocolloids.”ACS Energy Lett. 2019, 4, 1845-1851.
〔27〕 M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Grätzel.“Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance.”Science. 2016, 354, 206-209.
〔28〕 Hu, H.; Ren, Z.; Fong, P. W. K.; Qin, M.; Liu, D.; Lei, D.; Lu, X.; Li, G.“Room-Temperature Meniscus Coating of > 20% Perovskite Solar Cells: A Film Formation Mechanism Investigation.”Adv. Funct. Mater. 2019, 29, 1900092.
〔29〕 Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M.“Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency.”Energy Environ. Sci. 2016, 9, 1989-1997.
〔30〕 Ye Q.; Zhao Y.; Mu S.; Ma F.; Gao F.; Chu Z.; Yin Z.; Gao P.; Zhang X.; You J.“Cesium Lead Inorganic Solar Cell with Efficiency beyond 18% via Reduced Charge Recombination.”Adv. Mater. 2019, 31, 1905143.
〔31〕 Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Seok, S. I.; Lee, J.; Seo, J.“A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells.”Nat. Energy. 2018, 3, 682-689.
〔32〕 W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok.“High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.”Science. 2015, 348, 1234-1237.
〔33〕 Yang Woon, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I.“Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells.”Science. 2017, 356, 1376-1379.
〔34〕 D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R. H. Friend, Q. Gong, H. J. Snaith, R. Zhu.“Enhanced photovoltage for inverted planar heterojunction perovskite solar cells.”Science. 2018, 360, 1442-1446.
〔35〕 Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J.“Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications.”J. Photon. Energy. 2016, 6, 022001.
〔36〕 Kung, P.-K.; Li, M.-H.; Lin, P.-Y.; Chiang, Y.-H.; Chan, C.-R.; Guo, T.-F.; Chen, P.“A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells.”Adv. Mater. Interfaces. 2018, 5, 1800882.
〔37〕 Ren, G. H.; Han, W. B.; Deng, Y. Y.; Wu, W.; Li, Z. W.; Guo, J. X.; Bao, H. C.; Liu, C. Y.; Guo, W. B.“Strategies of Modifying Spiro-OMeTAD Materials for Perovskite Solar Cells: A Review.”J. Mater. Chem. A. 2021, 9, 4589-4625.
〔38〕 Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C.“Hole-transporting Materials in Inverted Planar Perovskite Solar Cells.”Adv. Energy Mater. 2016, 6, 1600474.
〔39〕 Sawada, T.; Yamagami, M.; Ohara, K.; Yamaguchi, K.; Fujita, M.“Peptide [4] Catenane by Folding and Assembly.”Angew. Chem., Int. Ed. 2016, 55, 4519-4522.
〔40〕 Wang, K.-C.; Shen, P.-S.; Li, M.-H.; Chen, S.; Lin, M.-W.; Chen, P.; Guo, T.-F.“Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells.”ACS Appl. Mater. Interfaces. 2014, 6, 11851-11858.
〔41〕 Zhao, J.; Zheng, X.; Deng, Y.; Li, T.; Shao, Y.; Gruverman, A.; Shield, J.; Huang, J.“Is Cu a Stable Electrode Material in Hybrid Perovskite Solar Cells for a 30-Year Lifetime?”Energy Environ. Sci. 2016, 9, 3650-3656.
〔42〕 J.-Y. Shao and Y.-W. Zhong.“Design of small molecular hole-transporting materials for stable and high-performance perovskite solar cells.”Chem. Phys. Rev. 2021, 2, 021302.
〔43〕 M. Wright, A. Uddin.“Organic - inorganic hybrid solar cells: a comparative review.”Sol. Energy Mater. Sol. Cells. 2012, 107, 87-111.
〔44〕 Qi, B.; Wang, J.“Open-Circuit Voltage in Organic Solar Cells.”J. Mater. Chem. 2012, 22, 24315-24325.
〔45〕 Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M.“Predicting the Open-Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non-Radiative Recombination.”Adv. Energy Mater. 2015, 5, 1400812.
〔46〕 Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sánchez, R. S.; Otero, L. A.; Mora-Sero, I.“Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells.”J. Phys. Chem. Lett. 2014, 5, 1628-1635.
〔47〕 Kini, G. P.; Parashar, M.; Jahandar, M.; Lee, J.; Chung, S.; Cho, K.; Shukla, V. K.; Singh, R.“Structure-property relationships of diketopyrrolopyrrole- and thienoacene-based A-D-A type hole transport materials for efficient perovskite solar cells.”New J. Chem. 2022, 46, 9572-9581.
〔48〕 Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.; Yao, X.; Feng, X.; Zhang, X.; Su, M.; He, Z.; Marks, T. J.; Facchetti, A.; Guo, X.“Teaching an Old Anchoring Group New Tricks: Enabling Low-Cost, Eco-Friendly Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells.”J. Am. Chem. Soc. 2020, 142, 16632-16643.
〔49〕 Huang, J.; Yang, J.; Sun, H.; Feng, K.; Liao, Q.; Li, B.; Yan, H.; Guo, X.“A Cost-Effective D-A-D Type Hole-Transport Material Enabling 20% Efficiency Inverted Perovskite Solar Cells.”Chin. J. Chem. 2021, 39, 1545-1552.
〔50〕 Y. Wang , N. Wu , X. Zhang , X. Liu , M. Han , R. Ghadari , F. Guo , Y. Ding , M. Cai and S. Dai.“Effects of Heteroatom and Extending the Conjugation on Linear Hole-Transporting Materials for Perovskite Solar Cells.”ACS Appl. Energy Mater. 2022, 5, 10553-10561.
〔51〕 Niu T., Zhu W., Zhang Y., Xue Q., Jiao X., Wang Z., Xie Y.-M., Li P., Chen R., Huang F., Li Y., Yip H.-L., Cao Y.“D-A-π-A-D-type Dopant-free Hole Transport Material for Low-Cost.”Joule. 2021, 5, 249-269.
〔52〕 Wu, N.; Zhang, X.; Liu, X.; Wang, Y.; Han, M.; Ghadari, R.; Wu, Y.; Ding, Y.; Cai, M.; Dai, S.“Efficient furan-bridged dibenzofulvene-triphenylamine hole transporting materials for perovskite solar cells.”Mater. Adv. 2023, 4, 515-522.
〔53〕 Wang, J., Xie, X., Cai, Y., He, L., Yuan, Y., Fei, W., Wang, L., Wang, P.“A saddle-shaped o-tetraphenylene based molecular semiconductor with a high glass transition temperature for perovskite solar cells.”J. Mater. Chem. A. 2021, 9, 9927-9936.
〔54〕 Wang, H.; Wu, C.; Zhai, M.; Chen, C.; Tao, L.; Ding, X.; Miao, Y.; Cheng, M.“Constructing Efficient Hole Transport Material through π-Conjunction Extension for Perovskite Solar Cell.”ACS Appl. Energy Mater. 2022, 5, 13261-13268.
〔55〕 Jia J., Zhang Y., Duan L., Wu Q., Chen Y., Xue S.“An asymmetrically substituted dithieno[3,2-b:2′,3′-d]pyrrole organic small-molecule hole-transporting material for high-performance perovskite solar cells.”Chinese Journal of Chemical Engineering. 2022, 45, 51-57.
〔56〕 Ali, F.; Roldán-Carmona, C.; Sohail, M.; Nazeeruddin, M. K.“Applications of Self-Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability.”Adv. Energy Mater. 2020, 10, 2002989.
〔57〕 Kim, S. Y.; Cho, S. J.; Byeon, S. E.; He, X.; Yoon, H. J.“Self-Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells.”Adv. Energy Mater. 2020, 10, 2002606.
〔58〕 Almasabi K, Zheng X, Turedi B, Alsalloum AY, Lintangpradipto MN, Yin J, Gutiérrez-Arzaluz L, Kotsovos K, Jamal A, Gereige I, Mohammed OF, Bakr OM.“Hole-Transporting Self-Assembled Monolayer Enables Efficient Single-Crystal Perovskite Solar Cells with Enhanced Stability.”ACS Energy Lett. 2023, 8, 950-956.
〔59〕 Chang, C. Y.; Huang, H. H.; Tsai, H.; Lin, S. L.; Liu, P. H.; Chen, W.; Hsu, F. C.; Nie, W.; Chen, Y. F.; Wang, L.“Facile Fabrication of Self-Assembly Functionalized Polythiophene Hole Transporting Layer for High Performance Perovskite Solar Cells.”Adv. Sci. 2021, 8, 2002718.
〔60〕 Song, D.; Narra, S.; Li, M. Y.; Lin, J. S.; Diau, E. W. G.“Interfacial Engineering with A Hole-selective Self-assembled Monolayer for Tin Perovskite Solar Cells via A Two-step Fabrication.”ACS Energy Lett. 2021, 6, 4179-4186.
〔61〕 Li, W.; Cariello, M.; Méndez, M.; Cooke, G.; Palomares, E.“Self-Assembled Molecules for Hole-Selective Electrodes in Highly Stable and Efficient Inverted Perovskite Solar Cells with Ultralow Energy Loss.”ACS Appl. Energy Mater. 2023, 6, 1239-1247.
〔62〕 Guo, X.; Kim, F. S.; Jenekhe, S. A.; Watson, M. D.“Phthalimide-Based Polymers for High Performance Organic Thin-Film Transistors.”J. Am. Chem. Soc. 2009, 131, 7206-7207.
〔63〕 J.Y. Lee, S. M. Lee, K. W. Song, D. K. Moon.“Synthesis and Photovoltaic Property of Polymer Semiconductor with Phthalimide Derivative as a Promising Electron Withdrawing Material.”European Polymer Journal. 2012, 48, 532-540.
〔64〕 Yu, J.; Yang, J.; Zhou, X.; Yu, S.; Tang, Y.; Wang, H.; Chen, J.; Zhang, S.; Guo, X.“Phthalimide-Based Wide Bandgap Donor Polymers for Efficient Non-Fullerene Solar Cells.”Macromolecules. 2017, 50, 8928-8937.
〔65〕 He, X.; Yin, L.; Li, Y.“Efficient Design and Structural Modifications for Tuning the Photoelectric Properties of Small-Molecule Acceptors in Organic Solar Cells.”New J. Chem. 2019, 43, 6577-6586.
〔66〕 Venkatramaiah, N.; Kumar, G. D.; Chandrasekaran, Y.; Ganduri, R.; Patil, S.“Efficient Blue and Yellow Organic Light-Emitting Diodes Enabled by Aggregation-Induced Emission.”ACS Appl. Mater. Interfaces. 2018, 10, 3838-3847.
〔67〕 M. Chapran, R. Lytvyn, C. Begel, G. Wiosna-Salyga, J. Ulanski, M. Vasylieva, D. Volyniuk, P. Data, J. V. Grazulevicius.“High-triplet-level phthalimide based acceptors for exciplexes with multicolor emission.”Dyes and Pigments. 2019, 162, 872-882.
〔68〕 Ye, T.; Wang, X. Z.; Wang, K.; Ma, S. Y.; Yang, D.; Hou, Y. C.; Yoon, Y.; Wang, K.; Priya, S.“Localized Electron Density Engineering for Stabilized B-γ CsSnI3-Based Perovskite Solar Cells with Efficiencies > 10%.”ACS Energy Lett. 2021, 6, 1480-1489.
〔69〕 Ji, X.; Feng, K.; Ma, S.; Wang, J.; Liao, Q.; Wang, Z.; Li, B.; Huang, J.; Sun, H.; Wang, K.; Guo, X.“Interfacial Passivation Engineering for Highly Efficient Perovskite Solar Cells with a Fill Factor over 83%.”ACS Nano. 2022, 16, 11902-11911.
〔70〕 Wang, J.; Liu, Y.; Xiao, X.; Bi, Z.; Lu, Y.; Sheng, G.; Cai, X.; Zhu, Y.; Xu, X.; Xu, G.“An efficient post-treatment strategy with acetylacetone for low temperature CsPbI2Br solar cells.”Sol. Energy. 2021, 216, 7-13.
〔71〕 Wang, R.; Gao, H.; Yu, R.; Jia, H.; Ma, Z.; He, Z.; Zhang, Y.; Yang, J.; Zhang, L.; Tan, Z.“β-Diketone Coordination Strategy for Highly Efficient and Stable Pb-Sn Mixed Perovskite Solar Cells.”J. Phys. Chem. Lett. 2021, 12, 11772-11778.
〔72〕 Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y.“Hole-Transporting Materials with a Two-Dimensionally Expanded π-System around an Azulene Core for Efficient Perovskite Solar Cells.”J. Am. Chem. Soc. 2015, 137, 15656-15659.
〔73〕 Hua, Y.; Xu, B.; Liu, P.; Chen, H.; Tian, H.; Cheng, M.; Kloo, L.; Sun, L.“High Conductivity Ag-Based Metal Organic Complexes as Dopant-Free Hole-Transport Materials for Perovskite Solar Cells with High Fill Factors.”Chem. Sci. 2016, 7, 2633-2638.
〔74〕 Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C.“Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications.”Adv. Mater. 2011, 23, 2367-2371.
〔75〕 Shirota, Y.“Photo- and electroactive amorphous molecular materials - molecular design, syntheses, reactions, properties, and applications.”J. Mater. Chem. 2005, 15, 75-93.
〔76〕 Bailie, C. D.; Unger, E. L.; Zakeeruddin, S. M.; Grätzel, M.; McGehee, M. D.“Melt-Infiltration of Spiro-OMeTAD and Thermal Instability of Solid-State Dye-Sensitized Solar Cells.”Phys. Chem. Chem. Phys. 2014, 16, 4864.
〔77〕 Malinauskas, T.; Tomkute-Luksiene, D.; Sens, R.; Daskeviciene, M.; Send, R.; Wonneberger, H.; Jankauskas, V.; Bruder, I.; Getautis, V.“Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD.”ACS Appl. Mater. Interfaces. 2015, 7, 11107-11116.
〔78〕 Krishna, A.; Grimsdale, A. C.“Hole Transporting Materials for Mesoscopic Perovskite Solar Cells-Towards a Rational Design.”J. Mater. Chem. A. 2017, 5, 16446-16466.
〔79〕 Li, T.-Y.; Su, C.; Akula, S. B.; Sun, W.-G.; Chien, H.-M.; Li, W.-R.“New Pyridinium Ylide Dyes for Dye Sensitized Solar Cell Applications.”Org. Lett. 2016, 18, 3386-3389.
〔80〕 Heyer, E.; Ziessel, R.“Panchromatic Push - Pull Dyes of Elongated Form from Triphenylamine, Diketopyrrolopyrrole, and Tetracyanobutadiene Modules.”Synlett. 2015, 26, 2109-2166.
〔81〕 Hattori, Y.; Michail, E.; Schmiedel, A.“Luminescent Mono-, Di-, and Triradicals: Bridging Polychlorinated Triarylmethyl Radicals by Triarylamines and Triarylboranes.”Chem. Eur. J. 2019, 25, 15463-15471.
〔82〕 Li, J.; Lin, H.; Huang, J.; Yin, J.“Dicyano-substituted 2, 3-naphthalimide: Synthesis and optoelectronic properties.”Dyes Pigm. 2019, 170, 107564.
〔83〕 Wang, X.; Zhang, Y.; Sun, X.; Bian, Y.; Ma, C.; Jiang, J.“2,3,9,10,16,17,24,25-Octakis(octyloxycarbonyl)phthalocyanines. Synthesis, Spectroscopic, and Electrochemical Characteristics.”Inorg. Chem. 2007, 46, 7136-7141.
〔84〕 Huang, X.; Hu, M.; Zhao, X.; Li, C.; Yuan, Z.; Liu, X.; Cai, C.; Zhang, Y.; Hu, Y.; Chen, Y.“Subphthalocyanine Triimides: Solution Processable Bowl-Shaped Acceptors for Bulk Heterojunction Solar Cells.”Org. Lett. 2019, 21, 3382-3386.
〔85〕 Hanack, M.; Stihler, P.“Synthesis of Ladder-Type Oligomers Incorporating Phthalocyanine Units.”Eur. J. Org. Chem. 2000, 303.
〔86〕 Da Costa, R. G.; Farias, F. R.; Maqueira, L.; Castanho, C.; Carneiro, L. S.; Almeida, J.; Buarque, C. D.; Aucélio, R. Q.; Limberger, J.“Synthesis, photophysical and electrochemical properties of novel D-π-D and D-π-A triphenylamino-chalcones and β-arylchalcones.”J. Braz. Chem. Soc. 2019, 30, 81-89.
指導教授 李文仁(Wen-Ren Li) 審核日期 2023-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明