博碩士論文 110426021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.117.94.180
姓名 許雯涵(Wen-Han Hsu)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 基於LSTM及GRU方法於建置預診斷與健康管理模型 — 以塗佈機為例
(Developing a Prognostics and Health Management Model Based on LSTM and GRU Approaches – A Case Study of Coating Machine)
相關論文
★ 應用灰色理論於有機農產品之經營管理— 需求預測及關鍵成功因素探討★ NAND型Flash價格與交運量預測在風險分析下之決策模式
★ 工業電腦用無鉛晶片組最適存貨政策之研究-以A公司為例★ 砷化鎵代工廠磊晶之最適存貨管理-以W公司為例
★ 資訊分享&決策制定下產銷協同關係之研究 -以IC設計業為例★ 應用分析層級法於電子化學品業委外供應商評選準則之研究
★ 應用資料探勘於汽車售服零件庫存滯銷因素分析-以C公司為例★ 多目標規劃最佳六標準差水準: 以薄膜電晶體液晶顯示器C公司製造流程為例
★ 以資料探勘技術進行消費者返廠定期保養之實證研究★ 以價值鏈觀點探討品牌公司關鍵組織流程之取決-以S公司為例
★ 應用產銷協同規劃之流程改善於化纖產業-現況改善與效益分析★ 權力模式與合作關係對於報價策略之影響研究—以半導體產業A公司為例
★ 應用資料探勘於汽車製造業之庫存原因分析★ 以類神經網路預測代工費報價---以中小面板產業C公司為例
★ 電路板產業存貨改善研究-以N公司為例★ 運用六標準差改善機台備用零件(Spare parts)存貨管理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,隨著工業程度的進步,在工業4.0的革命下,傳統的製造生產方式逐漸轉型成智慧製造。因此,各國企業紛紛導入像是工業物聯網(Industrial Internet of Things, IIOT)、大數據分析(Big Data)、感測器(Sensor)及人工智慧(Artificial Intelligence, AI)等等智慧製造之技術。利用設備整合人工智慧之技術達成準確、快速、省時與省力的目標,為求在競爭激烈下能夠脫穎而出。
達成智慧製造的一大關鍵在於減少設備之停機及非計劃性維護的次數等等的風險。設備透過感測器進行資料收集,同時藉由預測性維護技術達成提早預測異常狀態或停機,進而提升整體生產線之設備效率。
本研究以A公司之塗佈機為例,以其感測器所收集的數據作為資料來源,其中數據包括張力、扭力、速度及電流等變數。由於數據為時間序列資料,因此本研究透過長短期記憶網路(Long Short Term Memory, LSTM)及門控循環單元(Gated Recurrent Unit, GRU)方法進行異常檢測,並且透過搭配不同的非飽和激勵函數進行建模與分析。實驗結果顯示本研究所建置的24種模型皆有極高的準確率,且召回率皆達100%,又以LSTM模型,搭配激勵函數Leaky ReLU、隱藏層層數為兩層、神經元個數為128個的配置最佳,模型準確率達99.77%、特異度為99.76%、F1-Score為82.86%,與實際張力異常紀錄相比,模型能夠在異常發生前12秒有效預測機台異常狀況,有助於降低設備非計劃性之異常或停機,進而達成降低整體生產線之成本。
摘要(英) In recent years, with the progress of the industrial level, under the revolution of Industry 4.0, the traditional manufacturing and production methods have gradually transformed into smart factory. Therefore, companies from various countries have introduced smart factory technologies such as Industrial Internet of Things (IIOT), Big Data Analysis, Sensor and Artificial Intelligence (AI). Use the technology of equipment integration AI to achieve accurate, fast, time-saving and labor-saving goals, in order to stand out in the fierce competition.
One of the keys to achieving smart factory is to reduce the risks of equipment downtime and unplanned maintenance. The equipment collects data through sensors, and at the same time uses predictive maintenance technology to achieve early prediction of abnormal conditions or shutdowns, thereby improving the equipment efficiency of the overall production line.
This study takes the coating machine of company A as an example, and uses the data collected by its sensors as the source of data. The data includes variables such as tension, torque, speed and current. Since the data is time series data, this study uses Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) methods for anomaly detection, and by using different unsaturated excitation functions to model and analyze. The experimental results show that the 24 models built in this research all have extremely high accuracy, and the recall rate reaches 100%. The LSTM model with the following hyperparameter settings is the best: the activation function is Leaky ReLU, the number of hidden layers is 2, the number of neurons is 128. The accuracy rate of this model is 99.77%, the specificity is 99.76%, and the F1-Score is 82.86%. Compared with the actual tension abnormal record, the model can effectively predict the abnormal condition of the machine 12 seconds before the abnormality occurs, which helps to reduce unplanned abnormalities or shutdowns of equipment, thereby reducing the cost of the overall production line.
關鍵字(中) ★ 深度學習
★ 長短期記憶網路
★ 門控循環單元
★ 預測性維護
★ 異常檢測
關鍵字(英) ★ Deep Learning
★ Long Short Term Memory
★ Gated Recurrent Unit
★ Predictive Maintenance
★ Anomaly Detection
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
一、緒論 1
1-1研究背景與動機 1
1-2研究目的 2
1-3研究架構 2
二、文獻探討 3
2-1維護策略(Maintenance Strategy) 3
2-2異常檢測(Anomaly Detection) 3
2-3剩餘可用壽命(Remaining Useful Life, RUL) 5
2-4預診斷與健康管理(Prognostics and Health Management, PHM) 5
2-4-1預診斷與健康管理的架構 6
2-4-2預診斷與健康管理的預測方法 7
2-5人工智慧(Artificial Intelligence, AI) 9
2-5-1機器學習(Machine Learning, ML) 9
2-5-2深度學習(Deep Learning, DL) 10
2-5-3時間序列分析(Time Series Analysis) 10
三、研究方法 12
3-1研究對象 12
3-2研究問題 13
3-3資料前處理 14
3-3-1特徵縮放(Feature Scaling) 17
3-4時間序列模型 17
3-4-1長短期記憶(Long Short Term Memory, LSTM) 17
3-4-2門控循環單元(Gated Recurrent Unit, GRU) 19
3-4-3自動編碼器(Auto Encoder) 21
3-4-4激勵函數(Activation Function) 21
3-4-5損失函數(Loss Function) 25
3-4-6優化器(Optimizer) 25
3-5評價指標(Evaluation Metrics) 26
四、實驗結果與分析 28
4-1實驗環境與開發工具 28
4-2資料集說明 28
4-3實驗設計 29
4-3實驗結果 36
五、結論與未來展望 44
5-1結論 44
5-2未來研究建議 44
參考文獻 45
參考文獻 [1]Achouch, M., Dimitrova, M., Ziane, K., Karganroudi, S. S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Applied Sciences, 12(16), 8081.
[2]Atamuradov, V., Medjaher, K., Dersin, P., Lamoureux, B., & Zerhouni, N. (2017). Prognostics and Health Management for Maintenance Practitioners-Review, Implementation and Tools Evaluation. International Journal of Prognostics and Health Management, 8(Special Issue on Railways & Mass Transportation), 31.
[3]Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM Computing Surveys, 41(3).
[4]Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724–1734.
[5]Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint arXiv:1412.3555.
[6]Engel, S. J., Gilmartin, B. J., Bongort, K., & Hess, A. (2000). Prognostics, the Real Issues Involved with Predicting Life Remaining. IEEE Aerospace Conference Proceedings, 6, 457–469.
[7]Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural Computation, 9(8), 1735-1780.
[8]Kang, M., & Jameson, J. N. (2018). Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things. Wiley-IEEE Press.
[9]Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980.
[10]Ly, C., Tom, K., Byington, C. S., Patrick, R., & Vachtsevanos, G. J. (2009). Fault Diagnosis and Failure Prognosis for Engineering Systems: A Global Perspective. In Proceedings of the 2009 IEEE International Conference on Automation Science and Engineering.
[11]Mahesh, B. (2019). Machine Learning Algorithms - A Review. International Journal of Science and Research (IJSR), 9(1).
[12]Maxgrip. (2021). The Cost of Unplanned Downtime. https://www.maxgrip.com/resource/article-the-cost-of-unplanned-downtime/
[13]Mobley, R. K. (2002). An Introduction to Predictive Maintenance (2nd ed.). Butterworth-Heinemann. 1-13.
[14]Okoh, C., Roy, R., Mehnen, J., & Redding, L. (2014). Overview of Remaining Useful Life Prediction Techniques in Through-life Engineering Services. Procedia CIRP, 16, 158-163.
[15]Olah, C. (2015). Understanding LSTM Networks. http://colah.github.io/posts/2015-08-Understanding-LSTMs/
[16]Polyak, B. T. (1964). Some Methods of Speeding up the Convergence of Iteration Methods. USSR Computational Mathematics and Mathematical Physics, 4(5), 1-17.
[17]Robbins, H., & Monro, S. (1951). A Stochastic Approximation Method. The Annals of Mathematical Statistics, 22(3), 400-407.
[18]Sang, G. M., Xu, L., Vrieze, P. D., Bai, Y., & Pan, F. (2020). Predictive Maintenance in Industry 4.0. In Proceedings of the 10th International Conference on Information Systems and Technologies (ICIST ′2020).
[19]Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation Functions in Neural Networks. International Journal of Engineering Applied Sciences and Technology, 4(12), 310-316.
[20]Sun, B., Zeng, S., Kang, R., & Pecht, M. (2010). Benefits Analysis of Prognostics in Systems. In Proceedings of the Prognostics and Health Management Conference.
[21]Sutharssan, T., Stoyanov, S., Bailey, C., & Yin, C. (2015). Prognostic and Health Management for Engineering Systems: A Review of the Data-Driven Approach and Algorithms. The Journal of Engineering, 7(7), 215-222.
[22]Tieleman, T., & Hinton, G. (2012). Lecture 6.5 - RMSprop: Divide the Gradient by a Running Average of Its Recent Magnitude. COURSERA: Neural Networks for Machine Learning, 4, 26-31.
[23]Tiwari, T., Tiwari, T., & Tiwari, S. (2018). How Artificial Intelligence, Machine Learning and Deep Learning Are Radically Different. International Journals of Advanced Research in Computer Science and Software Engineering, 8(2).
[24]Venkatasubramanian, V. (2005). Prognostic and Diagnostic Monitoring of Complex Systems for Product Lifecycle Management: Challenges and Opportunities. Computers & Chemical Engineering, 29(6), 1253-1263.
[25]Vogl, G. W., Weiss, B. A., & Helu, M. (2019). A Review of Diagnostic and Prognostic Capabilities and Best Practices for Manufacturing. Journal of Intelligent Manufacturing, 30, 79-95.
指導教授 陳振明(Jen-Ming Chen) 審核日期 2023-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明