參考文獻 |
[1]Achouch, M., Dimitrova, M., Ziane, K., Karganroudi, S. S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Applied Sciences, 12(16), 8081.
[2]Atamuradov, V., Medjaher, K., Dersin, P., Lamoureux, B., & Zerhouni, N. (2017). Prognostics and Health Management for Maintenance Practitioners-Review, Implementation and Tools Evaluation. International Journal of Prognostics and Health Management, 8(Special Issue on Railways & Mass Transportation), 31.
[3]Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM Computing Surveys, 41(3).
[4]Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724–1734.
[5]Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint arXiv:1412.3555.
[6]Engel, S. J., Gilmartin, B. J., Bongort, K., & Hess, A. (2000). Prognostics, the Real Issues Involved with Predicting Life Remaining. IEEE Aerospace Conference Proceedings, 6, 457–469.
[7]Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural Computation, 9(8), 1735-1780.
[8]Kang, M., & Jameson, J. N. (2018). Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things. Wiley-IEEE Press.
[9]Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980.
[10]Ly, C., Tom, K., Byington, C. S., Patrick, R., & Vachtsevanos, G. J. (2009). Fault Diagnosis and Failure Prognosis for Engineering Systems: A Global Perspective. In Proceedings of the 2009 IEEE International Conference on Automation Science and Engineering.
[11]Mahesh, B. (2019). Machine Learning Algorithms - A Review. International Journal of Science and Research (IJSR), 9(1).
[12]Maxgrip. (2021). The Cost of Unplanned Downtime. https://www.maxgrip.com/resource/article-the-cost-of-unplanned-downtime/
[13]Mobley, R. K. (2002). An Introduction to Predictive Maintenance (2nd ed.). Butterworth-Heinemann. 1-13.
[14]Okoh, C., Roy, R., Mehnen, J., & Redding, L. (2014). Overview of Remaining Useful Life Prediction Techniques in Through-life Engineering Services. Procedia CIRP, 16, 158-163.
[15]Olah, C. (2015). Understanding LSTM Networks. http://colah.github.io/posts/2015-08-Understanding-LSTMs/
[16]Polyak, B. T. (1964). Some Methods of Speeding up the Convergence of Iteration Methods. USSR Computational Mathematics and Mathematical Physics, 4(5), 1-17.
[17]Robbins, H., & Monro, S. (1951). A Stochastic Approximation Method. The Annals of Mathematical Statistics, 22(3), 400-407.
[18]Sang, G. M., Xu, L., Vrieze, P. D., Bai, Y., & Pan, F. (2020). Predictive Maintenance in Industry 4.0. In Proceedings of the 10th International Conference on Information Systems and Technologies (ICIST ′2020).
[19]Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation Functions in Neural Networks. International Journal of Engineering Applied Sciences and Technology, 4(12), 310-316.
[20]Sun, B., Zeng, S., Kang, R., & Pecht, M. (2010). Benefits Analysis of Prognostics in Systems. In Proceedings of the Prognostics and Health Management Conference.
[21]Sutharssan, T., Stoyanov, S., Bailey, C., & Yin, C. (2015). Prognostic and Health Management for Engineering Systems: A Review of the Data-Driven Approach and Algorithms. The Journal of Engineering, 7(7), 215-222.
[22]Tieleman, T., & Hinton, G. (2012). Lecture 6.5 - RMSprop: Divide the Gradient by a Running Average of Its Recent Magnitude. COURSERA: Neural Networks for Machine Learning, 4, 26-31.
[23]Tiwari, T., Tiwari, T., & Tiwari, S. (2018). How Artificial Intelligence, Machine Learning and Deep Learning Are Radically Different. International Journals of Advanced Research in Computer Science and Software Engineering, 8(2).
[24]Venkatasubramanian, V. (2005). Prognostic and Diagnostic Monitoring of Complex Systems for Product Lifecycle Management: Challenges and Opportunities. Computers & Chemical Engineering, 29(6), 1253-1263.
[25]Vogl, G. W., Weiss, B. A., & Helu, M. (2019). A Review of Diagnostic and Prognostic Capabilities and Best Practices for Manufacturing. Journal of Intelligent Manufacturing, 30, 79-95. |