博碩士論文 110223019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.118.30.253
姓名 黃彩雯(Tsai-Wen Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 設計合成不同類型之以苯基作為連接的異喹啉鹽類應用於反式鈣鈦礦太陽能電池之電洞傳輸材料
(Synthesis of Various Types of Phenyl-Linked Isoquinoline Salts as Hole Transporting Materials for Inverted Perovskite Solar Cells)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 鈣鈦礦太陽能電池為當今最具潛力與發展性之第三代太陽能電池,其光
電轉換效率在過去二十年間由 3.9 % 提升至 25.7 %,而其中電洞傳輸材料是影響元件性能的關鍵角色。多數研究團隊以中性有機小分子作為研究目標,離子型化合物則較少成為研究對象,且目前尚未有團隊將 isoquinoline 作為電洞傳輸材料應用於鈣鈦礦太陽能電池中。因此本篇設計並合成出以 pyridine作為中間連接分子,兩側連接 isoquinoline,陰離子為溴離子之鹽類分子 IQB,並在 IQB 上分別連接兩個以及四個 triphenylamine 作為電子予體,合成出最終產物 TIQB 和 2TIQB。此系列化合物具有與鈣鈦礦層匹配之 highest occupied molecular orbital (HOMO)、良好的熱穩定性及溶解度。此外,離子型
分子可以與鈣鈦礦層中未配位之鉛離子和鹵素離子結合,鈍化缺陷,使晶體
生成更順利且薄膜更平整,進而提升電荷傳輸能力,我們預期此系列三個化
合物作為反式鈣鈦礦太陽能電池之電洞傳輸材料,將有不錯的光電轉換效率。
摘要(英) Perovskite solar cells (PSCs), as one of the most promising and developing third-generation solar cells nowadays, have increased substantially from 3.9 % to 25.7 % over the past twenty years. Furthermore, hole transport materials (HTMs)
play a crucial role in the performance of these devices. According to relevant literature, most research teams focus on organic small molecules as their targets, while there is less study on ionic compounds. Currently, no team has applied isoquinoline as a hole transport material in PSCs. Therefore, in this study, we designed and synthesized a salt molecule called IQB, with pyridine as the intermediate connecting molecule and isoquinoline connected on both sides, and the anion as a bromide ion. Besides, two or four triphenylamine units were connected to IQB as electron donors, resulting in the final products TIQB and 2TIQB. These compounds possess the highest occupied molecular orbital (HOMO) that matches the perovskite layer, as well as good thermal stability and solubility.Furthermore, ionic molecules can combine with undercoordinated lead ions and
halide ions in the perovskite layer, passivating defects, promoting smooth crystal formation, and achieving smoother thin films. This enhances the charge transfer ability. We anticipate that this series of three compounds will serve as HTMs in inverted PSCs and exhibit excellent photovoltaic conversion efficiency.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 異喹啉鹽類
★ 電洞傳輸材料
關鍵字(英) ★ perovskite
★ isoquinoline salts
★ hole transporting materials
論文目次 中文摘要 i
英文ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、 緒論 1
1-1前言 1
1-2太陽能電池的發展 2
1-3鈣鈦礦太陽能電池介紹 4
1-3-1元件基本架構 6
1-3-2鈣鈦礦太陽能電池工作原理 10
1-3-3太陽能電池光伏參數 11
1-4鈣鈦礦太陽能電池元件製程 14
1-5電洞傳輸層材料之文獻回顧 16
1-5-1線型結構(Linear-Type) 16
1-5-2星型結構(Star-Shape) 20
1-5-3螺旋型結構(Spiro-Type) 23
1-5-4 不對稱型結構(Asymmetric-Type) 25
二、結構設計概念及動機 28
三、 結果與討論 37
3-1 合成策略 37
3-2 理論計算-密度泛函理論(Density Functional Theory, DFT) 42
四、 結論與未來展望 46
五、實驗合成與光譜數據 47
5-1 實驗藥品 47
5-2實驗儀器 47
5-2-1核磁共振光譜儀(Nuclear Magnetic Resonance, NMR) 47
5-2-2超高解析質譜儀(High Mass Spectrometry) 48
5-2-3 電化學分析儀(Electrochemical Analyzer) 48
5-2-4 紫外光-可見光光譜儀(UV-Vis Spectrophotometer) 49
5-2-5 螢光光譜儀(Fluorescence Spectrophotometer) 49
5-2-6 熱重分析儀(Thermogravimetric Analyzer, TGA) 49
5-2-7 差式掃描熱儀(Differential Scanning Calorimetry, DSC) 49
5-3 實驗合成步驟 50
參考文獻 56
附錄 60
參考文獻 〔1〕Chu, S., Majumdar, A. “Opportunities and challenges for a sustainable
energy future.” Nature 2012, 488, 294-303.
〔2〕Chapin, D. M., Fuller, C. S., Pearson, G. L., “A New Silicon p‐n Junction
Photocell for Converting Solar Radiation into Electrical Power.” Journal of applied
physics 1954, 25, 676-677.
〔3〕Fthenakis, V. M., “Life cycle impact analysis of cadmium in CdTe PV
production.” Renewable and Sustainable Energy Reviews 2004, 8, 303-334.
〔4〕Green, M. A., “Third Generation Photovoltaics: Ultra‐high Conversion
Efficiency at Low Cost.” Progress in photovoltaics: Research and Applications
2001, 9, 123-135.
〔5〕Conibeer, G., “Third-generation photovoltaics.” Materials Today 2007, 10,
42-50.
〔6〕Kim, H., Lim, J., Sohail, M., Nazeeruddin, M. K., “Superhalogen Passivation
for Efficient and Stable Perovskite Solar Cells.” Sol. RRL 2022, 6, 2200013-
2200020.
〔7〕Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M.,
Snaith, H. J., “Formamidinium lead trihalide: a broadly tunable perovskite for
efficient planar heterojunction solar cells.” Energy Environ. Sci. 2014, 7, 982-988.
〔8〕Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., “Organometal Halide
Perovskites as Visible-Light Sensitizers for Photovoltaic Cells.” J. Am. Chem. Soc.
2009, 131, 6050-6051.
〔9〕Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A.,
Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J. E., Gratzel, M., Park, N.-
G., “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film
Mesoscopic Solar Cell with Efficiency Exceeding 9%.” Sci. Rep. 2012, 2, 591.
〔10〕Jiang, Q., Zhang, X., You, J., “SnO2: A Wonderful Electron Transport
Layer for Perovskite Solar Cells.” Small 2018, 14, 1801154-1801168.
〔11〕Zhang, P., Wu, J., Zhang, T., Wang, Y., Liu, D., Chen, H., Ji, L., Liu, C.,
Ahmad, W., Chen, Z. D., “Perovskite Solar Cells with ZnO Electron‐Transporting
Materials.” Adv. Mater. 2018, 30, 1703737-1703757.
〔12〕Said, A. A., Xie, J., Zhang, Q., “Recent Progress in Organic Electron
Transport Materials in Inverted Perovskite Solar Cells.” Small 2019, 15, 1900854-
1900877.
〔13〕Zhou, L., Chang, J., Liu, Z., Sun, X., Lin, Z., Chen, D., Zhang, C., Zhang,
J., Hao, Y., “Enhanced planar perovskite solar cell efficiency and stability using a
57
perovskite/PCBM heterojunction formed in one step.” Nanoscale 2018, 10, 3053-
3059.
〔14〕Yang, W. S., Park, B.-W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U.,
Shin, S. S., Seo, J., Kim, E. K., Noh, J. H., “Iodide management in formamidiniumlead-halide–based perovskite layers for efficient solar cells.” Science 2017, 356,
1376-1379.
〔15〕SSun, N., Gao, W., Dong, H., Liu, Y., Liu, X., Wu, Z., Song, L., Ran, C.,
Chen, Y., “Architecture of pin Sn-Based Perovskite Solar Cells: Characteristics,
Advances, and Perspectives.” ACS Energy Lett. 2021, 6, 2863-2875.
〔16〕Kung, P. K., Li, M. H., Lin, P. Y., Chiang, Y. H., Chan, C. R., Guo, T. F.,
Chen, P., “A Review of Inorganic Hole Transport Materials for Perovskite Solar
cells.” Adv. Mater. Interfaces 2018, 5, 1800882-1800917.
〔17〕You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y., Chang, W.-H., Hong,
Z., Chen, H., Zhou, H., Chen, Q., “Improved air stability of perovskite solar cells
via solution-processed metal oxide transport layers.” Nature Nanotechnology 2016,
11, 75-81.
〔18〕Arora, N., Dar, M. I., Hinderhofer, A., Pellet, N., Schreiber, F.,
Zakeeruddin, S. M., Grätzel, M., “Perovskite solar cells with CuSCN hole
extraction layers yield stabilized efficiencies greater than 20%.” Science 2017, 358,
768-771.
〔19〕Ren, G., Han, W., Deng, Y., Wu, W., Li, Z., Guo, J., Bao, H., Liu, C., Guo,
W., “Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a
review.” J. Mater. Chem. A 2021, 9, 4589-4625.
〔20〕Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., Seok, S. I.,
“Solvent engineering for high-performance inorganic–organic hybrid perovskite
solar cells.” Nature Materials 2014, 13, 897-903.
〔21〕Marinova, N., Valero, S., Delgado, J. L., “Organic and Perovskite Solar
Cells: Working Principles, Materials and Interfaces.” Journal of colloid and
interface science 2017, 488, 373-389.
〔22〕Song, Z., Watthage, S. C., Phillips, A. B., Heben, M. J., “Pathways toward
high-performance perovskite solar cells: review of recent advances in organo-metal
halide perovskites for photovoltaic applications.” J. Photon. Energy 2016, 6,
022001-022001.
〔23〕Huang, J., Yang, J., Sun, H., Feng, K., Liao, Q., Li, B., Yan, H., Guo, X.,
“A Cost‐Effective D‐A‐D Type Hole‐Transport Material Enabling 20% Efficiency
Inverted Perovskite Solar Cells.” Chin. J. Chem. 2021, 39, 1545-1552.
〔24〕Ou, Y., Sun, A., Li, H., Wu, T., Zhang, D., Xu, P., Zhao, R., Zhu, L., Wang,
R., Xu, B., “Developing D–π–D hole-transport materials for perovskite solar cells:
58
the effect of the π-bridge on device performance.” Mater. Chem. Front. 2021, 5,
876-884.
〔25〕Niu, T., Zhu, W., Zhang, Y., Xue, Q., Jiao, X., Wang, Z., Xie, Y.-M., Li, P.,
Chen, R., Huang, F., “D-A-π-A-D-type dopant-free hole transport material for lowcost, efficient, and stable perovskite solar cells.” Joule 2021, 5, 249-269.
〔26〕Huang, C., Fu, W., Li, C.-Z., Zhang, Z., Qiu, W., Shi, M., Heremans, P.,
Jen, A. K.-Y., Chen, H., “D-A-π-A-D-type Dopant-free Hole Transport Material
for Low-Cost, Efficient, and Stable Perovskite Solar Cells.” J. Am. Chem. Soc.
2016, 138, 8, 2528-2531.
〔27〕Paek, S., Qin, P., Lee, Y., Cho, K. T., Gao, P., Grancini, G., Oveisi, E.,
Gratia, P., Rakstys, K., Al‐Muhtaseb, S. A., “Dopant‐Free Hole‐Transporting
Materials for Stable and Efficient Perovskite Solar Cells.” Adv. Mater. 2017, 29,
1606555-1606562.
〔28〕Saliba, M., Orlandi, S., Matsui, T., Aghazada, S., Cavazzini, M., CorreaBaena, J.-P., Gao, P., Scopelliti, R., Mosconi, E., Dahmen, K.-H., “A molecularly
engineered hole-transporting material for efficient perovskite solar cells.” Nature
Energy 2016, 1, 1-7.
〔29〕Jeon, N. J., Na, H., Jung, E. H., Yang, T.-Y., Lee, Y. G., Kim, G., Shin, H.-
W., Il Seok, S., Lee, J., Seo, J., “A fluorene-terminated hole-transporting material
for highly efficient and stable perovskite solar cells.” Nature Energy 2018, 3, 682-
689.
〔30〕Budiawan, W., Lai, K.-W., Karuppuswamy, P., Jadhav, T. S., Lu, Y.-A.,
Ho, K.-C., Wang, P.-C., Chang, C.-C., Chu, C.-W., “Asymmetric
Benzotrithiophene-Based Hole Transporting Materials Provide High-Efficiency
Perovskite Solar Cells.” ACS Appl. Mater. Interfaces 2020, 12, 29143−29152.
〔31〕Qin, T., Wu, F., Ma, D., Mu, Y., Chen, X., Yang, Z., Zhu, L., Zhang, Y.,
Zhao, J., Chi, Z., “Asymmetric Sulfonyldibenzene-Based Hole-Transporting
Materials for Efficient Perovskite Solar Cells: Inspiration from Organic ThermallyActivated Delayed Fluorescence Molecules.” ACS Materials Lett. 2020, 2, 1093-
1100.
〔32〕Liu, S., Guan, Y., Sheng, Y., Hu, Y., Rong, Y., Mei, A., Han, H., “A
Review on Additives for Halide Perovskite Solar Cells.” Adv. Energy Mater. 2020,
10, 1902492.
〔33〕Cheng, M., Aitola, K., Chen, C., Zhang, F., Liu, P., Sveinbjörnsson, K.,
Hua, Y., Kloo, L., Boschloo, G., Sun, L., “Acceptor–Donor–Acceptor Type Ionic
Molecule Materials for Efficient Perovskite Solar Cells and Organic Solar Cells.”
Nano Energy 2016, 30, 387-397.
59
〔34〕Ma, S., Liu, X., Zhang, X., Ghadari, R., Ding, Y., Cai, M., Dai, S.,
“Introducing ammonium salt into hole transporting materials for perovskite solar
cells.” Chem. Commun. 2020, 56, 14471-14474.
〔35〕Akula, S. B., Su, C., Wang, Y.-T., Tingare, Y. S., Chen, B.-R., Jheng, Y.-
C., Lin, Y.-J., Lan, H.-C., Chang, Y.-C., Lekphet, W., Li, W.-R., “Novel thienoimidazole salt-based hole transport material for dopant-free, efficient inverted
perovskite solar cell applications.” Journal of Power Sources 2021, 483, 229177-
229185.
〔36〕Zhang, Q., Wei, S., Zhou, S., Wei, X., Xu, Z., Wang, Z., Wei, B., Lu, X.,
“Theoretical Investigation on Copper (I) Complexes Featuring a Phosphonic Acid
Anchor with Asymmetric Ligands for DSSC.” ACS Appl. Electron. Mater. 2020, 2,
2141-2150.
〔37〕Li, G., Wu, J., Song, J., Meng, C., Song, Z., Wang, X., Liu, X., Yang, Y.,
Wang, D., Lan, Z., “Excellent quinoline additive in perovskite toward to efficient
and stable perovskite solar cells.” Journal of Power Sources 2021, 481, 228857-
228864.
〔38〕Agarwala, P., Kabra, D., “A review on triphenylamine (TPA) based organic
hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and
perovskite solar cells (PSCs): evolution and molecular engineering.” J. Mater.
Chem. A 2017, 5, 1348-1373.
〔39〕Schmidt, A., Albrecht, M., “Photocatalytically Active Materials with
Pyridinium-enolate Partial Structures.” Z. Naturforsch. 2008, 63b, 465-472.
〔40〕Yanchishin, V., Karlivan, G., Valter, R., “Synthesis and properties of
dipyridinium betaines of derivatives of 1,4-benzoquinone and
tetracyanoquinodimethane.” Chemistry of Heterocyclic Compounds 1998, 34, 312-
315.
〔41〕Horváth, D. V., Domonyi, F., Palkó, R., Lomoschitz, A., Soós, T.,
“Regioexhaustive Functionalization of the Carbocyclic Core of Isoquinoline:
Concise Synthesis of Oxoaporphine Core and Ellipticine.” Synthesis 2018, 50,
2181-2190.
〔42〕Tiwari, V. K., Kamal, N., Kapur, M., “One Substrate, Two Modes of C–H
Functionalization: A Metal-Controlled Site-Selectivity Switch in C–H Arylation
Reactions.” Org. Lett. 2017, 19, 262-265.
指導教授 李文仁(Wen-Ren Li) 審核日期 2023-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明