博碩士論文 110623011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:18.223.196.59
姓名 陳昱瑋(Yu-Wei Chen)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 水星磁層對行星際磁場與太陽風動壓的反應
(Responses of Mercury′s Magnetopause to Interplanetary Magnetic Fields and Solar Wind Dynamic Pressure)
相關論文
★ 磁暴與磁副暴的關係:檢視跨磁尾電流對 SYM-H 的貢獻★ 磁尾的磁場延伸和偶極化現象與磁副暴發生位置的距離關係之探討
★ 二胞型極光與行星際磁場間的關係★ 磁層頂位置之不對稱性研究
★ 兩類快速電漿流事件與夜側極光活動關係之研究★ 太陽風對地球磁層頂內側磁場之影響
★ 磁層頂日下點對峙距離和行星際磁場錐角值關係的研究★ 運用西蜜斯衛星資料研究低頻帶升調合唱波的重複發生週期之分布
★ 太空環境中的兩個觀測難題: 前艏震波區域波擾動斜向傳播現象與 接觸不連續面的存在證據★ 徑向行星際磁場事件之特性及其對磁層之影響
★ 太空天氣對Formosat-2及Formosat-3異常事件影響之分析★ 多能量通道之極區沉降粒子研究
★ 徑向行星際磁場下日側極光與電離層對流型態★ 應用長短期記憶遞迴神經網路預測Kp地磁指數
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當行星的磁層受到太陽風的壓縮時,會令磁層的強度增加,我們可以使用受到壓縮的磁層磁場與行星純磁偶極場之間的比值來衡量磁層受壓縮的程度。對地球來說,此比值與日下點距離的增加成正比。但我們使用MESSENGER衛星的資料對水星磁層進行分析後發現,水星的趨勢與地球相反,在磁層頂靠近水星時反而有著更高的壓縮率,這是由於水星核心表面的感應磁場增加了日側磁場的強度。除此之外我們還分析了在南向與北向行星際磁場之間,水星磁層頂日下點距離是否有所差異。過去的研究沒有觀察到顯著的差異存在,然而我們的研究顯示在較高的行星際磁場Z分量下,水星日下點距離存在著具有統計顯著性的差異。在北向行星際磁場的條件下,極尖區後方的磁重聯將磁通量由磁尾傳輸到日側磁層,進而增加了磁層頂日下點距離。而南向行星際磁場造成的磁場侵蝕能夠被核心的感應磁場所補償。
摘要(英) When a planet’s magnetosphere is compressed by the solar wind, the magnetic field intensity of its magnetosphere increases. This compression can be measured by the ratio of the compressed magnetic field to the planet′s dipole field. The ratio is directly proportional to the subsolar standoff distance of the magnetopause for Earth. However, our analysis using magnetopause crossing data from the MESSENGER satellite reveals a contrary trend. The compression rate is higher when Mercury’s magnetopause is closer to its center, indicating that the induced magnetic field on the surface of Mercury′s core enhances the intensity of the dayside magnetic field. In addition, previous studies suggested that there are no differences on Mercury’s subsolar standoff distance between the north–south polarities of the interplanetary magnetic field (IMF). However, our research shows statistically significant differences under higher IMF BZ component (15–20 nT). Magnetic reconnection behind the cusp transports magnetic flux from the magnetotail to the dayside magnetosphere under northward IMF condition, resulting in an increased distance of the subsolar standoff distance. The induced magnetic fields compensate the eroded magnetic flux for a large southward IMF.
關鍵字(中) ★ 水星
★ 磁層頂
★ 太陽風
★ 行星際磁場
★ 磁重聯
★ 太陽-行星耦合
關鍵字(英) ★ Mercury
★ Magnetopause
★ Solarwind
★ Interplanetary magnetic field
★ Magnetic reconnection
★ Solar-planetary interactions
論文目次 摘要....................I
Abstract....................II
致謝....................III
目錄....................IV
圖目錄....................VII
表目錄....................IX
第一章 緒論....................1
1-1 類地行星的磁層結構與電流系統....................1
1-2 磁層頂位置與太陽風、行星際磁場的反應....................5
1-3 水星磁層的特性....................9
第二章 MESSENGER觀測數據與處理....................12
2-1 MESSENGER衛星與其酬載....................12
2-1-1 MAG儀器介紹....................15
2-1-2 EPPS儀器介紹....................15
2-2 Aberrated MSM座標系統....................16
2-3 磁層頂穿越的辨識與採樣....................18
2-4 使用標準差篩選資料....................20
2-5 計算日下點距離....................21
2-6 數據分布....................23
2-6-1 Student′s t-test....................26
2-6-2 Welch′s t-test....................30
2-6-3 F-test用於標準差檢驗....................31
2-6-4 Student′s t-test與F-test結果....................33
2-7 IMF的時間持續性....................33
第三章 磁場與壓縮比對RSS的擬合....................36
3-1 使用F-test評估回歸模型擬合結果....................36
3-2 磁層頂的壓力平衡....................37
3-3 磁層頂正內側磁場—RSS擬合....................38
3-3-1 北向IMF條件下磁層頂正內側磁場—RSS擬合結果....................39
3-3-2 南向IMF條件下磁層頂正內側磁場—RSS擬合結果....................41
3-3-3 磁層頂正內側磁場—RSS回歸模型的顯著性....................42
3-4 磁場壓縮比—RSS擬合....................43
3-4-1 北向IMF條件下磁場壓縮比—RSS擬合結果....................44
3-4-2 南向IMF條件下磁場壓縮比—RSS擬合結果....................45
3-4-3 磁場壓縮比—RSS回歸模型的顯著性....................46
3-5 受壓縮磁層額外增加的磁場強度....................47
第四章 去除磁層頂日下點距離之太陽風相依性....................48
4-1 日下點距離隨IMF BZ的變化....................48
4-2 去太陽風動壓相依性RSS....................50
4-2-1 北向IMF條件下去相依性日下點距離與IMF BZ之間的關係....................51
4-2-2 南向IMF條件下去相依性日下點距離與IMF BZ之間的關係....................52
第五章 討論與結論....................53
5-1 討論....................53
5-2 結論....................59
參考文獻....................61
附錄一 磁層頂穿越資料....................67
參考文獻 Aizawa, S., Griton, L. S., Fatemi, S., Exner, W., Deca, J., Pantellini, F., Yagi, M., Heyner, D., Génot, V., André, N., Amaya, J., Murakami, G., Beigbeder, L., Gangloff, M., Bouchemit, M., Budnik, E., & Usui, H. (2021). Cross-comparison of global simulation models applied to Mercury’s dayside magnetosphere. Planetary and Space Science, 198, 105176.

Anderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. (2007). The Magnetometer Instrument on MESSENGER. Space Science Reviews, 131, 417-450.

Anderson, B. J., Acuña, M. H., Korth, H., Purucker, M. E., Johnson, C. L., Slavin, J. A., Solomon, S. C., & McNutt, R. L. (2008). The Structure of Mercury′s Magnetic Field from MESSENGER′s First Flyby. Science, 321(5885), 82-85.

Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L., Raines, J. M., & Zurbuchen, T. H. (2011). The Global Magnetic Field of Mercury from MESSENGER Orbital Observations. Science, 333(6051), 1859-1862.

Andrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., LeFevere, T. W., Livi, S. S., Lundgren, R. A., & Raines, J. M. (2007). The Energetic Particle and Plasma Spectrometer Instrument on the MESSENGER Spacecraft. Space Science Reviews, 131(1), 523-556.

Beatty, J. K., Petersen, C. C., & Chaikin, A. (1999). The New Solar System. Cambridge University Press.

Boardsen, S. A., Eastman, T. E., Sotirelis, T., & Green, J. L. (2000). An empirical model of the high-latitude magnetopause. Journal of Geophysical Research: Space Physics, 105(A10), 23193-23219.

DiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Baker, D. N., McNutt Jr., R. L., & Solomon, S. C. (2013). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118(3), 997-1008.

Diego, P., Piersanti, M., Laurenza, M., & Villante, U. (2020). Properties of Solar Wind Structures at Mercury′s Orbit. Journal of Geophysical Research: Space Physics, 125(9), e2020JA028281.

Dong, C., Wang, L., Hakim, A., Bhattacharjee, A., Slavin, J. A., DiBraccio, G. A., & Germaschewski, K. (2019). Global Ten-Moment Multifluid Simulations of the Solar Wind Interaction with Mercury: From the Planetary Conducting Core to the Dynamic Magnetosphere. Geophysical Research Letters, 46(21), 11584-11596.

Dungey, J. W. (1961). Interplanetary Magnetic Field and the Auroral Zones. Physical Review Letters, 6(2), 47-48.

Exner, W., Simon, S., Heyner, D., & Motschmann, U. (2020). Influence of Mercury′s Exosphere on the Structure of the Magnetosphere. Journal of Geophysical Research: Space Physics, 125(7), e2019JA027691.

Fairfield, D. H. (1971). Average and unusual locations of the Earth′s magnetopause and bow shock. Journal of Geophysical Research (1896-1977), 76(28), 6700-6716.

Fatemi, S., Poirier, N., Holmström, M., Lindkvist, J., Wieser, M., & Barabash, S. (2018). A modelling approach to infer the solar wind dynamic pressure from magnetic field observations inside Mercury’s magnetosphere. A&A, 614, A132.

Frey, H. U., Phan, T. D., Fuselier, S. A., & Mende, S. B. (2003). Continuous magnetic reconnection at Earth′s magnetopause. Nature, 426(6966), 533-537.

Gamborino, D., Vorburger, A., & Wurz, P. (2019). Mercury′s subsolar sodium exosphere: an ab initio calculation to interpret MASCS/UVVS observations from MESSENGER. Ann. Geophys., 37(4), 455-470.

Gershman, D. J., Zurbuchen, T. H., Fisk, L. A., Gilbert, J. A., Raines, J. M., Anderson, B. J., Smith, C. W., Korth, H., & Solomon, S. C. (2012). Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER. Journal of Geophysical Research: Space Physics, 117(A12).

Glassmeier, K.-H., Auster, H.-U., & Motschmann, U. (2007). A feedback dynamo generating Mercury′s magnetic field. Geophysical Research Letters, 34(22).

Hauck II, S. A., Margot, J.-L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E., & Zuber, M. T. (2013). The curious case of Mercury′s internal structure. Journal of Geophysical Research: Planets, 118(6), 1204-1220.

He, M., Vogt, J., Heyner, D., & Zhong, J. (2017). Solar wind controls on Mercury′s magnetospheric cusp. Journal of Geophysical Research: Space Physics, 122(6), 6150-6164.

Heyner, D., Nabert, C., Liebert, E., & Glassmeier, K.-H. (2016). Concerning reconnection-induction balance at the magnetopause of Mercury. Journal of Geophysical Research: Space Physics, 121(4), 2935-2961.

Heyner, D., Wicht, J., Gómez-Pérez, N., Schmitt, D., Auster, H.-U., & Glassmeier, K.-H. (2011). Evidence from Numerical Experiments for a Feedback Dynamo Generating Mercury’s Magnetic Field. Science, 334(6063), 1690-1693.

Holzer, R. E., & Slavin, J. A. (1978). Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere. Journal of Geophysical Research: Space Physics, 83(A8), 3831-3839.

Hood, L. L., & Schubert, G. (1979). Inhibition of solar wind impingement on mercury by planetary induction currents. Journal of Geophysical Research: Space Physics, 84(A6), 2641-2647.

Jia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G., & van der Holst, B. (2015). Global MHD simulations of Mercury′s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 120(6), 4763-4775.

Jia, X., Slavin, J. A., Poh, G., DiBraccio, G. A., Toth, G., Chen, Y., Raines, J. M., & Gombosi, T. I. (2019). MESSENGER Observations and Global Simulations of Highly Compressed Magnetosphere Events at Mercury. Journal of Geophysical Research: Space Physics, 124(1), 229-247.

Johnson, C. L., Philpott, L. C., Anderson, B. J., Korth, H., Hauck II, S. A., Heyner, D., Phillips, R. J., Winslow, R. M., & Solomon, S. C. (2016). MESSENGER observations of induced magnetic fields in Mercury′s core. Geophysical Research Letters, 43(6), 2436-2444.

Johnson, C. L., Purucker, M. E., Korth, H., Anderson, B. J., Winslow, R. M., Al Asad, M. M. H., Slavin, J. A., Alexeev, I. I., Phillips, R. J., Zuber, M. T., & Solomon, S. C. (2012). MESSENGER observations of Mercury′s magnetic field structure. Journal of Geophysical Research: Planets, 117(E12).

Lühr, H., Xiong, C., Olsen, N., & Lê, G. (2017). Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents. Space Science Reviews, 206.

Lavorenti, F., Henri, P., Califano, F., Deca, J., Aizawa, S., André, N., & Benkhoff, J. (2022). Electron dynamics in small magnetospheres. A&A, 664, A133.

Leary, J. C., Conde, R. F., Dakermanji, G., Engelbrecht, C. S., Ercol, C. J., Fielhauer, K. B., Grant, D. G., Hartka, T. J., Hill, T. A., Jaskulek, S. E., Mirantes, M. A., Mosher, L. E., Paul, M. V., Persons, D. F., Rodberg, E. H., Srinivasan, D. K., Vaughan, R. M., & Wiley, S. R. (2007). The MESSENGER Spacecraft. Space Science Reviews, 131(1), 187-217.

Lin, R. L., Zhang, X. X., Liu, S. Q., Wang, Y. L., & Gong, J. C. (2010). A three-dimensional asymmetric magnetopause model. Journal of Geophysical Research: Space Physics, 115(A4).

Ness, N. F., Behannon, K. W., Lepping, R. P., & Whang, Y. C. (1975). Magnetic field of Mercury confirmed. Nature, 255(5505), 204-205.

Ness, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C., & Schatten, K. H. (1974). Magnetic Field Observations near Mercury: Preliminary Results from Mariner 10. Science, 185(4146), 151-160.

Philpott, L. C., Johnson, C. L., Anderson, B. J., & Winslow, R. M. (2020). The Shape of Mercury′s Magnetopause: The Picture From MESSENGER Magnetometer Observations and Future Prospects for BepiColombo. Journal of Geophysical Research: Space Physics, 125(5), e2019JA027544.

Schield, M. A. (1969). Pressure balance between solar wind and magnetosphere. Journal of Geophysical Research (1896-1977), 74(5), 1275-1286.

Shue, J.-H., Chao, J.-K., Song, P., McFadden, J. P., Suvorova, A., Angelopoulos, V., Glassmeier, K. H., & Plaschke, F. (2009). Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields. Geophysical Research Letters, 36(18).

Shue, J.-H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., & Singer, H. J. (1997). A new functional form to study the solar wind control of the magnetopause size and shape. Journal of Geophysical Research: Space Physics, 102(A5), 9497-9511.

Shue, J.-H., Chen, Y.-S., Hsieh, W.-C., Nowada, M., Lee, B. S., Song, P., Russell, C. T., Angelopoulos, V., Glassmeier, K. H., McFadden, J. P., & Larson, D. (2011). Uneven compression levels of Earth′s magnetic fields by shocked solar wind. Journal of Geophysical Research: Space Physics, 116(A2).

Sibeck, D. G., Lopez, R. E., & Roelof, E. C. (1991). Solar wind control of the magnetopause shape, location, and motion. Journal of Geophysical Research: Space Physics, 96(A4), 5489-5495.

Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P., & Zurbuchen, T. H. (2009). MESSENGER Observations of Magnetic Reconnection in Mercury’s Magnetosphere. Science, 324(5927), 606-610.

Slavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., Zurbuchen, T. H., Jia, X., Baker, D. N., Glassmeier, K.-H., Livi, S. A., Boardsen, S. A., Cassidy, T. A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., McNutt Jr., R. L., & Solomon, S. C. (2014). MESSENGER observations of Mercury′s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119(10), 8087-8116.

Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A., Lemoine, F. G., Mazarico, E., Neumann, G. A., Peale, S. J., Margot, J.-L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W., & Taylor, A. H. (2012). Gravity Field and Internal Structure of Mercury from MESSENGER. Science, 336(6078), 214-217.

Song, X., Zuo, P., Feng, X., Shue, J.-H., Wang, Y., Jiang, C., Zhou, Z., & Xu, X. (2019). Abnormal magnetospheric magnetic gradient direction reverse around the indented magnetopause. Astrophysics and Space Science, 364(9), 146.

Student. (1908). The Probable Error of a Mean. Biometrika, 6(1), 1-25.

Toepfer, S., Narita, Y., Exner, W., Heyner, D., Kolhey, P., Glassmeier, K. H., & Motschmann, U. (2021). The Mie representation for Mercury’s magnetospheric currents. Earth, Planets and Space, 73(1), 204.

Wang, Y., Sibeck, D. G., Merka, J., Boardsen, S. A., Karimabadi, H., Sipes, T. B., Šafránková, J., Jelínek, K., & Lin, R. (2013). A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations. Journal of Geophysical Research: Space Physics, 118(5), 2173-2184.

Wardinski, I., Amit, H., Langlais, B., & Thébault, E. (2021). The Internal Structure of Mercury′s Core Inferred From Magnetic Observations. Journal of Geophysical Research: Planets, 126(12), e2020JE006792.

Welch, B. L. (1947). THE GENERALIZATION OF ‘STUDENT′S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED. Biometrika, 34(1-2), 28-35.

Winslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D. N., & Solomon, S. C. (2013). Mercury′s magnetopause and bow shock from MESSENGER Magnetometer observations. Journal of Geophysical Research: Space Physics, 118(5), 2213-2227.

Zhong, J., Shue, J.-H., Wei, Y., Slavin, J. A., Zhang, H., Rong, Z. J., Chai, L. H., & Wan, W. X. (2020). Effects of Orbital Eccentricity and IMF Cone Angle on the Dimensions of Mercury′s Magnetosphere. The Astrophysical Journal, 892, 2.

Zhong, J., Wan, W. X., Slavin, J. A., Wei, Y., Lin, R. L., Chai, L. H., Raines, J. M., Rong, Z. J., & Han, X. H. (2015). Mercury′s three-dimensional asymmetric magnetopause. Journal of Geophysical Research: Space Physics, 120(9), 7658-7671.

Zhong, J., Wan, W. X., Wei, Y., Slavin, J. A., Raines, J. M., Rong, Z. J., Chai, L. H., & Han, X. H. (2015). Compressibility of Mercury′s dayside magnetosphere. Geophysical Research Letters, 42(23), 10,135-110,139.
指導教授 許志浤(Jih-Hong Shue) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明