博碩士論文 110223059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:18.117.196.217
姓名 黃莉雯(Li-Wen Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以溫和水相法快速封裝酵素及合成鋁基底金屬有機骨架材料用於口服藥物傳輸之研究
(A Mild Water-based Approach for Obtaining Encapsulation of Enzyme into Aluminum-based Metal-Organic Frameworks for Oral Drug Delivery Research)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 金屬有機骨架材料相比於傳統無機孔洞材料如微孔的沸石,具高比表面積和優異的熱穩定性。同時且金屬有機骨架材料具有實現孔洞以及結構的多樣性,因此近年來被廣泛應用於分離、催化、氣體儲存和藥物傳遞等領域。鋁是一種便宜、資源充足且其鹽類為無毒之金屬,此外,鋁奈米粒子(Al nanoparticles),具有極佳的生物安全性以及生物相容性,而以鋁為基底的金屬有機骨架材料具出色的熱穩定性和生物相容性,使其成為理想的疫苗佐劑及生物分子載體。酵素在醫學方面有多種運用,可以治療或輔助治療多種疾病,如:代謝缺陷(Metabolic deficiencies)、癌症和心血管疾病等,且具有高效催化和專一的反應能力,但由於酵素在催化完畢後難以與產物在反應溶液中分離,並且在嚴苛的環境下會失去活性,在實際應用上存在許多限制,因此,增加酵素穩定性和實用性的酵素固定化顯得尤其重要。若酵素作為口服藥物,路徑必須先經過胃,因此,若想發展酵素利用口服的方式在小腸中作用,必須要有適當載體,能夠保護酵素,通過胃強酸的環境,同時避免被蛋白酶水解。
本論文成功地在溫和水相條件下於20分鐘內快速合成鋁基底金屬有機骨架材料NH2-MIL-53,並成功地封裝過氧化氫酶(Catalase, CAT)於其中,CAT@NH2-MIL-53。該合成過程中沒有使用有機溶劑,不僅可使酵素保持活性,更符合現今對綠色化學的提倡。同時利用X光粉末繞射探討NH2-MIL-53合成最適條件,且藉由跑膠(SDS-PAGE)及等溫氮氣吸/脫附結果證明過氧化氫酶被包覆於NH2-MIL-53中。CAT@NH2-MIL-53利用金屬有機骨架材料的孔洞性質,CAT受到孔洞材料的保護並允許受質(H2O2)進入NH2-MIL-53進行催化反應,防止被大分子蛋白質水解酶(Proteinase K)分解,得到活性(kobs:6.2 ×10-2 s-1),相比於先前本實驗室於CAT@ZIF-90活性(kobs:2.5 ×10-2 s-1),活性增加2.5倍。而我們對CAT的活性趨勢做出推論:隨著合成時間的拉長,CAT的活性隨之下降;隨著合成金屬比例的提高,活性亦會隨之下降。NH2-MIL-53可耐酸性至約pH 1.5,在PBS緩衝溶液 (Phosphate Buffered Saline pH 7.4) 會崩解,而我們模擬CAT@NH2-MIL-53在胃的環境中(浸泡在pH 2鹽酸水溶液含胃蛋白酶),CAT依然保有活性(kobs:1.6 ×10-2 s-1),意即NH2-MIL-53能夠保護CAT抵抗較為嚴苛的環境,提供一種口服藥物之傳遞路徑。
摘要(英) Metal-Organic Frameworks (MOFs), recognized for their high surface area and thermal stability, allow for diverse pore structures. This versatility has propelled their use in fields like gas storage and drug delivery. Particularly, aluminum-based MOFs, due to their inherent biocompatibility and the immune-enhancing properties of aluminum, have emerged as promising candidates for vaccine and protein delivery. Enzymes, prized for their high catalytic efficiency and specificity, are key in treating diverse diseases like metabolic deficiencies, cancers, and cardiovascular diseases. However, their effectiveness in oral administration is hampered by deactivation in harsh environments like the stomach′s acidity. This underscores the necessity of enzyme immobilization to boost their stability and practical application. The carrier shields enzymes or proteins from hydrolysis and aids their absorption via the intestinal microvessels, thus enabling their entry into the bloodstream and systemic circulation.
In our research, we synthesized the Al-based Metal-Organic Framework (MOF) NH2-MIL-53(Al) under mild aqueous conditions in 20 minutes. We also encapsulated the enzyme catalase (CAT) into the MOF, creating a biocomposite named CAT@NH2-MIL-53. Encapsulation was confirmed through Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and isothermal nitrogen gas adsorption/desorption measurements. Our method preserved enzyme biological activity (kobs of 6.2×10-2 s-1) and provided proteolysis protection against proteases like Proteinase K. This activity which had a kobs of 2.49×10-2 s-1 surpasses our previous CAT@ZIF-90 research at least 2.5 fold times. Conversely, an elongated synthesis time reduces CAT activity, and an increased metal-to-linker synthetic ratio also diminishes activity.
Material tolerance assays show that under gastric conditions (pH 2 hydrochloric acid solution with pepsin), the NH2-MIL-53 structure remains stable even at pH 1.5 for 3 hours. The encapsulated catalase (CAT) retains its biological activity (kobs of 1.6×10-2 s-1). Notably, NH2-MIL-53 disintegrates in PBS buffer solution (Phosphate Buffered Saline, mimicking blood conditions) at pH 7.4, indicating potential enzyme release from NH2-MIL-53 in the bloodstream.
關鍵字(中) ★ 鋁基底有機骨架材料
★ NH2-MIL-53(Al)
★ 酵素固定化
★ 生物複合性材料
★ 過氧化氫酶
關鍵字(英)
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第 1 章 緒論 1
1.1 金屬有機骨架材料(Metal-Organic Frameworks) 1
1.2 鋁基底金屬有機骨架材料 (Aluminum-based Metal-Organic Frameworks) 3
1.3 NH2-MIL-53(Al) 5
1.4 酵素固定化(Enzyme immobilization) 6
1.5 酵素於疾病治療(Enzymes for pharmaceutical and therapeutic applications) 9
1.6 過氧化氫酶(Catalase) 10
1.7 研究動機 12
第 2 章 實驗部分 14
2.1 實驗藥品 14
2.2 實驗儀器 15
2.2.1 實驗使用儀器 15
2.2.2 實驗鑑定儀器 16
2.3 實驗儀器原理 17
2.3.1 X射線粉末繞射儀(Powder X-ray Diffractometer, PXRD) 17
2.3.2 場發掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, SEM) 18
2.3.3 等溫氮氣吸/脫附儀(Accelerated Surface Area and Porosimetry system, ASAP) 19
2.3.4 紫外/可見光分光光譜儀 (UV/Vis Sepectophotometer) 21
2.4 實驗步驟與方法 23
2.4.1 合成NH2-MIL-53 23
2.4.2 合成CAT@NH2-MIL-53 23
2.4.3 測定包覆率(Bradford Assay) 23
2.4.4 測定過氧化氫酶之活性(FOX Assay) 24
2.4.5 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE) 26
第 3 章 結果與討論 29
3.1 NH2-MIL-53(Al) 合成條件探討 29
3.1.1 探討金屬與有機配位體之比例 29
3.1.2 探討緩衝溶液不同pH值 30
3.1.3 探討緩衝溶液不同濃度 31
3.1.4 探討不同合成時間 32
3.2 CAT@NH2-MIL-53(Al)之鑑定與活性測定 34
3.2.1 CAT@NH2-MIL-53(Al)之PXRD圖 34
3.2.2 SDS-PAGE 35
3.2.3 等溫氮氣吸/脫附結果比較 36
3.2.4 CAT@NH2-MIL-53(Al)之包覆率 37
3.2.5 CAT@NH2-MIL-53(Al)之活性測定 38
3.2.6 NH2-MIL-53(Al)與CAT@NH2-MIL-53(Al)之SEM圖 39
3.3 CAT@NH2-MIL-53(Al)之活性比較 41
3.3.1 不同金屬比例 41
3.3.2 不同合成時間 44
3.4 NH2-MIL-53(Al)耐酸鹼實驗 50
3.5 模擬胃酸環境 52
3.5.1 NH2-MIL-53(Al)在不同pH值模擬胃酸耐受性測試 52
3.5.2 CAT@NH2-MIL-53(Al)之PXRD圖 54
3.5.3 CAT@NH2-MIL-53(Al)之包覆率 55
3.5.4 CAT@NH2-MIL-53(Al)之活性測試 55
3.5.5 CAT@NH2-MIL-53(Al)之SEM圖 56
第 4 章 結論及未來展望 58
參考文獻 59
參考文獻 1. Yaghi, O.M., et al., Reticular synthesis and the design of new materials. Nature. 2003, 423(6941), 705-14.
2. Yaghi, O.M., G. Li, and H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature. 1995, 378(6558), 703-706.
3. Li, H., et al., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999, 402(6759), 276-279.
4. Furukawa, H., et al., The chemistry and applications of metal-organic frameworks. Science. 2013, 341(6149), 1230444.
5. Getman, R.B., et al., Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews. 2012, 112(2), 703-723.
6. Suh, M.P., et al., Hydrogen storage in metal-organic frameworks. Chem Rev. 2012, 112(2), 782-835.
7. Li, J.-R., J. Sculley, and H.-C. Zhou, Metal–Organic Frameworks for Separations. Chemical Reviews. 2012, 112(2), 869-932.
8. Yoon, M., R. Srirambalaji, and K. Kim, Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews. 2012, 112(2), 1196-1231.
9. Horcajada, P., et al., Metal-organic frameworks in biomedicine. Chem Rev. 2012, 112(2), 1232-68.
10. Yoon, M., et al., Proton Conduction in Metal–Organic Frameworks and Related Modularly Built Porous Solids. Angewandte Chemie International Edition. 2013, 52(10), 2688-2700.
11. Kreno, L.E., et al., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews. 2012, 112(2), 1105-1125.
12. Bétard, A. and R.A. Fischer, Metal-organic framework thin films: from fundamentals to applications. Chem Rev. 2012, 112(2), 1055-83.
13. Yusuf, V.F., N.I. Malek, and S.K. Kailasa, Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega. 2022, 7(49), 44507-44531.
14. Lee, Y.-R., J. Kim, and W.-S. Ahn, Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering. 2013, 30(9), 1667-1680.
15. Shieh, F.K., et al., Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chemistry. 2013, 19(34), 11139-42.
16. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English. 1985, 24(12), 1026-1040.
17. Ameloot, R., et al., Patterned film growth of metal–organic frameworks based on galvanic displacement. Chemical Communications. 2010, 46(21), 3735-3737.
18. Klinowski, J., et al., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions. 2011, 40(2), 321-330.
19. Pichon, A., A. Lazuen-Garay, and S.L. James, Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm. 2006, 8(3), 211-214.
20. Qiu, L.-G., et al., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications. 2008(31), 3642-3644.
21. Seetharaj, R., et al., Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry. 2019, 12(3), 295-315.
22. Zeraati, M., et al., Synthesis of Al-Based Metal-Organic Framework in Water With Caffeic Acid Ligand and NaOH as Linker Sources With Highly Efficient Anticancer Treatment. Frontiers in Chemistry. 2021, 9.
23. Mesa, C. and L.E. Fernández, Challenges facing adjuvants for cancer immunotherapy. Immunology & Cell Biology. 2004, 82(6), 644-650.
24. Lindblad, E.B., Aluminium adjuvants—in retrospect and prospect. Vaccine. 2004, 22(27), 3658-3668.
25. Hogenesch, H., Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol. 2012, 3, 406.
26. Wu, T., N. Prasetya, and K. Li, Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. Journal of Membrane Science. 2020, 615, 118493.
27. Fan, W., et al., Aluminum metal–organic frameworks: From structures to applications. Coordination Chemistry Reviews. 2023, 489, 215175.
28. Gándara, F., et al., High Methane Storage Capacity in Aluminum Metal–Organic Frameworks. Journal of the American Chemical Society. 2014, 136(14), 5271-5274.
29. Guo, L., et al., Efficient capture and storage of ammonia in robust aluminium-based metal-organic frameworks. Communications Chemistry. 2023, 6(1), 55.
30. Maity, A., et al., Crystal Structure Directed Catalysis by Aluminum Metal-Organic Framework: Mechanistic Insight into the Role of Coordination of Al Sites and Entrance Size of Catalytic Pocket. ACS Materials Letters. 2020, 2(7), 699-704.
31. Mallakpour, S., E. Nikkhoo, and C.M. Hussain, Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordination Chemistry Reviews. 2022, 451, 214262.
32. Loiseau, T., et al., A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chemistry – A European Journal. 2004, 10(6), 1373-1382.
33. Serre, C., et al., Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. Journal of the American Chemical Society. 2002, 124(45), 13519-13526.
34. Férey, G., et al., Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53. Chemical Communications. 2003(24), 2976-2977.
35. Llewellyn, P.L., et al., Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL-53(Fe). J Am Chem Soc. 2009, 131(36), 13002-8.
36. Cheng, X., et al., Size- and morphology-controlled NH2-MIL-53(Al) prepared in DMF–water mixed solvents. Dalton Transactions. 2013, 42(37), 13698-13705.
37. Tran, T.V., et al., A critical review on the synthesis of NH2-MIL-53(Al) based materials for detection and removal of hazardous pollutants. Environmental Research. 2023, 216, 114422.
38. Boutin, A., et al., Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption. Microporous and Mesoporous Materials. 2011, 140(1), 108-113.
39. Parent, L.R., et al., Pore Breathing of Metal–Organic Frameworks by Environmental Transmission Electron Microscopy. Journal of the American Chemical Society. 2017, 139(40), 13973-13976.
40. Serra-Crespo, P., et al., Interplay of Metal Node and Amine Functionality in NH2-MIL-53: Modulating Breathing Behavior through Intra-framework Interactions. Langmuir. 2012, 28(35), 12916-12922.
41. Boulé, R., et al. Thermal and Guest-Assisted Structural Transition in the NH2-MIL-53(Al) Metal Organic Framework: A Molecular Dynamics Simulation Investigation. Nanomaterials. 2018, 8.
42. Couck, S., et al., An Amine-Functionalized MIL-53 Metal−Organic Framework with Large Separation Power for CO2 and CH4. Journal of the American Chemical Society. 2009, 131(18), 6326-6327.
43. Couck, S., et al., Adsorption and Separation of Light Gases on an Amino-Functionalized Metal–Organic Framework: An Adsorption and In Situ XRD Study. ChemSusChem. 2012, 5(4), 740-750.
44. Amirilargani, M., et al., MIL-53(Al) and NH2-MIL-53(Al) modified α-alumina membranes for efficient adsorption of dyes from organic solvents. Chemical Communications. 2019, 55(28), 4119-4122.
45. Singh, R., et al., Microbial enzymes: industrial progress in 21st century. 3 Biotech. 2016, 6(2), 174.
46. Schmid, A., et al., Industrial biocatalysis today and tomorrow. Nature. 2001, 409(6817), 258-68.
47. Basso, A. and S. Serban, Industrial applications of immobilized enzymes—A review. Molecular Catalysis. 2019, 479, 110607.
48. Datta, S., L.R. Christena, and Y.R. Rajaram, Enzyme immobilization: an overview on techniques and support materials. 3 Biotech. 2013, 3(1), 1-9.
49. Chen, Y., et al., How Can Proteins Enter the Interior of a MOF? Investigation of Cytochrome c Translocation into a MOF Consisting of Mesoporous Cages with Microporous Windows. Journal of the American Chemical Society. 2012, 134(32), 13188-13191.
50. Lian, X., et al., Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews. 2017, 46(11), 3386-3401.
51. Pisklak, T.J., et al., Hybrid materials for immobilization of MP-11 catalyst. Topics in Catalysis. 2006, 38(4), 269-278.
52. Cao, S.-L., et al., Novel Nano-/Micro-Biocatalyst: Soybean Epoxide Hydrolase Immobilized on UiO-66-NH2 MOF for Efficient Biosynthesis of Enantiopure (R)-1, 2-Octanediol in Deep Eutectic Solvents. ACS Sustainable Chemistry & Engineering. 2016, 4(6), 3586-3595.
53. Lykourinou, V., et al., Immobilization of MP-11 into a Mesoporous Metal–Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis. Journal of the American Chemical Society. 2011, 133(27), 10382-10385.
54. de la Fuente, M., et al., Enzyme Therapy: Current Challenges and Future Perspectives. Int J Mol Sci. 2021, 22(17).
55. Chaturvedi, S., et al., Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach. Scientifica (Cairo). 2016, 2016, 9828672.
56. Robertson, J.G., Enzymes as a special class of therapeutic target: clinical drugs and modes of action. Curr Opin Struct Biol. 2007, 17(6), 674-9.
57. Petersen, K.U., Pepsin and Its Importance for Functional Dyspepsia: Relic, Regulator or Remedy? Dig Dis. 2018, 36(2), 98-105.
58. Brennan, G.T. and M.W. Saif, Pancreatic Enzyme Replacement Therapy: A Concise Review. Jop. 2019, 20(5), 121-125.
59. Shemesh, E., et al., Enzyme replacement and substrate reduction therapy for Gaucher disease. Cochrane Database Syst Rev. 2015, 2015(3), Cd010324.
60. Dean, S.N., et al., Targeting and delivery of therapeutic enzymes. Ther Deliv. 2017, 8(7), 577-595.
61. Maximov, V., V. Reukov, and A.A. Vertegel, Targeted delivery of therapeutic enzymes. Journal of Drug Delivery Science and Technology. 2009, 19(5), 311-320.
62. Devasagayam, T.P., et al., Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India. 2004, 52, 794-804.
63. Webb, M. and D.P. Sideris Intimate Relations—Mitochondria and Ageing. International Journal of Molecular Sciences. 2020, 21.
64. Valko, M., et al., Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007, 39(1), 44-84.
65. Schroeder, W.A., et al., Some amino acid sequences in bovine-liver catalase. Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects. 1964, 89(1), 47-65.
66. Blokhina, O., E. Virolainen, and K.V. Fagerstedt, Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003, 91 Spec No(2), 179-94.
67. Fita, I. and M.G. Rossmann, The NADPH binding site on beef liver catalase. Proc Natl Acad Sci U S A. 1985, 82(6), 1604-8.
68. Chance, B., Effect of pH upon the reaction kinetics of the enzyme-substrate compounds of catalase. J Biol Chem. 1952, 194(2), 471-81.
69. Najafi, A., et al., Catalase application in cancer therapy: Simultaneous focusing on hypoxia attenuation and macrophage reprogramming. Biomedicine & Pharmacotherapy. 2022, 153, 113483.
70. Thakkar, S., et al., Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta biomaterialia. 2020, 101, 43-68.
71. https://www.ebi.ac.uk/pdbe/entry/pdb/7cat.
72. Chen, Y., et al., Acid-Resistant Mesoporous Metal-Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. J Am Chem Soc. 2018, 140(17), 5678-5681.
73. Delchier, J.C., et al., Fate of orally ingested enzymes in pancreatic insufficiency: comparison of two pancreatic enzyme preparations. Aliment Pharmacol Ther. 1991, 5(4), 365-78.
74. Ketwaroo, G.A. and D.Y. Graham, Rational Use of Pancreatic Enzymes for Pancreatic Insufficiency and Pancreatic Pain. Adv Exp Med Biol. 2019, 1148, 323-343.
75. Gascón-Pérez, V., et al. Efficient One-Step Immobilization of CaLB Lipase over MOF Support NH2-MIL-53(Al). Catalysts. 2020, 10.
76. Liao, F.-S., et al., Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. Journal of the American Chemical Society. 2017, 139(19), 6530-6533.
77. Jauncey, G.E., The Scattering of X-Rays and Bragg′s Law. Proc Natl Acad Sci U S A. 1924, 10(2), 57-60.
78. https://commons.wikimedia.org/wiki/File:Bragg_diffraction_2.svg.
79. https://www.britannica.com/technology/scanning-electron-microscope.
80. Sing, K.S.W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). 1985, 57(4), 603-619.
81. https://www.aps.org/publications/apsnews/201108/physicshistory.cfm.
82. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72, 248-54.
83. Jiang, Z.Y., A.C. Woollard, and S.P. Wolff, Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990, 268(1), 69-71.
84. Ou, P. and S.P. Wolff, A discontinuous method for catalase determination at ′near physiological′ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. J Biochem Biophys Methods. 1996, 31(1-2), 59-67.
85. Nelson, D.P. and L.A. Kiesow, Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H 2 O 2 solutions in the UV). Anal Biochem. 1972, 49(2), 474-8.
86. Liu, J., et al., Ionothermal synthesis and proton-conductive properties of NH2-MIL-53 MOF nanomaterials. CrystEngComm. 2016, 18(4), 525-528.
87. Sánchez-Sánchez, M., et al., Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chemistry. 2015, 17(3), 1500-1509.
88. Yue, Y., et al., Template-Free Synthesis of Hierarchical Porous Metal–Organic Frameworks. Journal of the American Chemical Society. 2013, 135(26), 9572-9575.
指導教授 謝發坤 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明