博碩士論文 110223063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.135.194.251
姓名 邱浩哲(HAU JE, CHIOU)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用原位創新合成法進行酵素固定化生產高果糖玉米糖漿之研究
(Enzyme Immobilization via de Novo Approach on the Conversion of Glucose to Fructose)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 在現今人類生活中,充滿著高果糖玉米糖漿。高果糖玉米糖漿是一種常見的甜味劑,廣泛使用於食品工業中。隨著新冠疫情的緩解和商業活動的復甦,全球高果糖玉米糖的市場更是以每年3-5%的速度成長中,並有望在2030年達到破百億美元市場的規模。
為了降低工業上生產高果糖玉米糖漿中酵素所支出的成本,會進行酵素固定化的步驟從而達到回收酵素、重複使用酵素、降低生產成本的目的。但目前常見的酵素固定化需要經過繁瑣的步驟和花費大量的成本。
本研究參考本實驗室過去所發表的文獻配方,將生產高果糖玉米糖漿中所需使用到的兩種酵素──蔗糖分解酶與葡萄糖異構酶快速固定於有機金屬骨架材料Zn-MOF-74中。研究旨在一步驟將蔗糖直接轉變為高果糖玉米糖漿,並可以透過簡單的過濾方式快速將酵素與產物進行分離、回收、再反應。
本研究成功將蔗糖分解酶與葡萄糖異構酶利用原位創新合成法固定於有機金屬骨架材料Zn-MOF-74中,達到酵素固定化的目的。葡萄糖異構酶經過固定化後,活性達到了未經固定化的百分之八十,依然保持著相當良好的活性。而蔗糖分解酶在經過固定化後,除了保持活性,更發現在原本反應活性不良的環境下,表現出更高的活性 (kobs=9.1*10-2),甚至為未經固定化的數十倍 (未固定化之kobs為1.2*10-3)。由於此研究具有酵素固定化與分離產物的簡易性,將有望提供另外一條以更低廉成本生產高果糖玉米糖漿的酵素固定化途徑。並且發現經過固定化的酵素將有機會擴大酵素原先的pH值使用範圍,從而提高酵素的應用範圍。
摘要(英) Nowadays, sweeteners are widely used. High fructose corn syrup (HFCS) is a common sweetener in various food industries. HFCS can imparts sweetness, enhances taste, and increase the moisture content of food. With the easing of the COVID-19 pandemic as well as the recovery of commercial activities, global market for HFCS is projected to grow at a rate of 3-5%, annually. According to reports, it is expected to reach billions of US dollars by 2030.
In order to reduce the cost of enzymes used in the production of HFCS, enzyme immobilization techniques are employed to enable enzyme recycle, reusability, and lower production costs. However, there are still some challenges for imbedding glucose related enzymes into supporting materials because of complicated procedures and significant expenses.
The recipe used in this study is based on the methods in previous papers published by our laboratory (JACS 2015 and ACS AMI 2021). In this study, we encapsulated two enzymes, invertase and glucose isomerase, which are essential to produce HFCS, into metal-organic frameworks (MOFs) called Zn-MOF-74 under de novo mild water-based condition. The de novo approach is a method which is able to rapid and simple encapsulation of enzymes into MOFs material under mild water solution at room temperature. The aims are to directly convert sucrose into HFCS through a tandem reaction. This approach enables the rapid separation, recovery, and reactivity of enzymes and products using simple filtration.
We successfully encapsulate invertase and glucose isomerase into Zn-MOF-74 material for obtaining enzymes@MOFs biocomposites using the de novo approach. After immobilization, the activity of GI@Zn-MOF-74 was maintained 80% of its non-immobilized one. Moreover, the immobilized invertase not only retained its activity (kobs=9.1*10-2) but also exhibited significantly higher activity compared to the non-immobilized invertase (kobs=1.2*10-3), even under unfavorable reaction conditions. This study demonstrates an enzyme immobilization approach for creating enzymes@MOFs biocomposites with simplified process, which could lead to a more cost-effective production of HFCS. Additionally, it was discovered that immobilized enzymes have the potential to adapt broader pH range in their applications, expanding their usability in various fields.
關鍵字(中) ★ 有機金屬骨架材料
★ 葡萄糖異構酶
★ 蔗糖分解酶
★ 酵素固定化
★ 高果糖玉米糖漿
關鍵字(英) ★ Metal-organic Frameworks
★ Glucose Isomerase
★ Invertase
★ Enzyme Immobilization
★ High Fructose Corn Syrup
論文目次 中文摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第一章
緒論 1
1-1 金屬有機骨架材料 1
1-1-1 簡介 1
1-1-2 有機金屬骨架材料 Zn-MOF-74 3
1-2 高果糖玉米糖漿 5
1-3 生產高果糖玉米糖漿所用到的酵素 7
1-3-1 蔗糖分解酶 (Invertase, 7
1-3-2 葡萄糖異構酶 (Glucose Isomerase, GI) 8
1-4 酵素固定化與有機金屬骨架材料 9
1-5 研究動機與目的 11
第二章
實驗部分 12
2-1 實驗藥品 12
2-2 實驗使用儀器 15
2-3 實驗鑑定用儀器 16
2-4 實驗儀器之原理 17
2-4-1 紫外光可見光分光光譜儀 (UV/VIS Spectrophotometer) 17
2-4-2 X射線粉末繞射儀 (Powder X-ray Diffractometer XRD) 19
2-4-3 冷場發射掃描式電子顯微鏡 (Scanning Electron Microscope
SEM) 21
2-5 實驗所用之分析方法 23
2-5-1 Bradford Assay: 偵測蛋白質濃度 23
2-5-2 Seliwanoff′s Test: 用於測定葡萄糖異構酶活性 24
2-5-3 糖脎反應 : 用於測定蔗糖分解酶活性 25
2-5-4 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 26
2-6 實驗步驟 29
2-6-1 合成純材料 Zn-MOF-74 29
2-6-2 合成葡萄糖異構酶包覆於 Zn-MOF-74中 29
2-6-3 合成蔗糖分解酶包覆於 Zn-MOF-74中 30
2-6-4 合成雙酵素包覆於 Zn-MOF-74中 30
2-6-5 配製 Seliwanoff′s Reagent與檢量線 45, 46 31
2-6-6 配製糖脎反應試劑與檢量線 32
2-6-7 測定蛋白 質含量 33
2-6-8 測定葡萄糖異構酶活性 34
2-6-9 測定蔗糖分解酶活性 47, 48 36
2-6-10 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 38
第三章
結果與討論 40
3-1 Zn-MOF-74之鑑定 40
3-1-1 Zn-MOF-74之 X射線粉末繞射圖譜鑑定 40
3-1-2 Zn-MOF-74之掃描式電子顯微鏡影像分析 42
3-2 葡萄糖異構酶包覆於 Zn-MOF-74之鑑定與活性實驗 43
3-2-1 GI@Zn-MOF-74之 X射線粉末繞射圖譜鑑定 43
3-2-2 GI@Zn-MOF-74之掃描式電子顯微鏡影像分析 45
3-2-3 GI@Zn-MOF-74與 GI之活性探討 46
3-2-4 GI@Zn-MOF-74之 SDS-PAGE鑑定 47
3-3 蔗糖分解酶包覆於 Zn-MOF-74之鑑定與活性實驗 48
3-3-1 INV@Zn-MOF-74之 X射線粉末繞射圖譜鑑定 48
3-3-2 INV@Zn-MOF-74之掃描式電子顯微鏡影像分析 50
3-3-3 INV@Zn-MOF-74與 INV之活性探討 51
3-3-4 INV@Zn-MOF-74之 SDS-PAGE鑑定 53
第四章
結論及未來展望 55
參考文獻 56
參考文獻 1. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
2. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
3. Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
4. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
5. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
6. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
7. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chemistry – A European Journal 2013, 19 (34), 11139-11142.
8. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
9. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
10. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
11. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
12. Seetharaj, R.; Vandana, P. V.; Arya, P.; Mathew, S., Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry 2019, 12 (3), 295-315.
13. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O′Keeffe, M.; Yaghi, O. M., Hydrogen Storage in Microporous Metal-OrganicFrameworks. Science 2003, 300 (5622), 1127-1129.
14. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012, 112 (2), 1196-1231.
15. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews 2009, 38 (5), 1477-1504.
16. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 2012, 112 (2), 1055-1083.
17. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
18. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
19. Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M., Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano 2014, 8 (7), 7451-7457.
20. He, C.; Liu, D.; Lin, W., Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers. Chemical Reviews 2015, 115 (19), 11079-11108.
21. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O′Keeffe, M.; Yaghi, O. M., Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. Journal of the American Chemical Society 2005, 127 (5), 1504-1518.
22. Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle Iii, T.; Bosch, M.; Zhou, H.-C., Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews 2014, 43 (16), 5561-5593.
23. Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M., Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science 2012, 336 (6084), 1018-1023.
24. Rowsell, J. L. C.; Yaghi, O. M., Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal−Organic Frameworks. Journal of theAmerican Chemical Society 2006, 128 (4), 1304-1315.
25. Xiao, T.; Liu, D., The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives. Microporous and Mesoporous Materials 2019, 283, 88-103.
26. Liu, Y.; Kabbour, H.; Brown, C. M.; Neumann, D. A.; Ahn, C. C., Increasing the Density of Adsorbed Hydrogen with Coordinatively Unsaturated Metal Centers in Metal−Organic Frameworks. Langmuir 2008, 24 (9), 4772-4777.
27. Julien, P. A.; Užarević, K.; Katsenis, A. D.; Kimber, S. A. J.; Wang, T.; Farha, O. K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M.; Dinnebier, R. E.; James, S. L.; Halasz, I.; Friščić, T., In Situ Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society 2016, 138 (9), 2929-2932.
28. Wei, T.-H.; Wu, S.-H.; Huang, Y.-D.; Lo, W.-S.; Williams, B. P.; Chen, S.-Y.; Yang, H.-C.; Hsu, Y.-S.; Lin, Z.-Y.; Chen, X.-H.; Kuo, P.-E.; Chou, L.-Y.; Tsung, C.-K.; Shieh, F.-K., Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature Communications 2019, 10 (1), 5002.
29. Dinesh T , R. D. Corn Syrup Market by Type (Light Syrup, Dark Syrup, Corn Syrup Solids, High Fructose Corn Syrup), by Application (Food and Beverages, Pharmaceuticals), by Distribution Channel (B2B, B2C): Global Opportunity Analysis and Industry Forecast, 2021-2031; A16985; alliedmarketresearch: 2022.
30. Roels, J. A.; van Tilburg, R., Temperature Dependence of Stability and Activity of an Immobilized Glucose Isomerase in a Packed Bed. Starch - Stärke 1979, 31 (1), 17-24.
31. Bhosale, S. H.; Rao, M. B.; Deshpande, V. V., Molecular and industrial aspects of glucose isomerase. Microbiol Rev 1996, 60 (2), 280-300.
32. Hartley, B. S.; Hanlon, N.; Jackson, R. J.; Rangarajan, M., Glucose isomerase: insights into protein engineering for increased thermostability. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 2000, 1543 (2), 294-335.
33. Koeller, K. M.; Wong, C.-H., Enzymes for chemical synthesis. Nature 2001, 409 (6817), 232-240.
34. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial biocatalysis today and tomorrow. Nature 2001, 409 (6817), 258-268.
35. Datta, S.; Christena, R.; Rajaram, Y., Enzyme immobilization: An overview on techniques and support materials. 3 Biotech 2012, 3.
36. Liu, D.-M.; Chen, J.; Shi, Y.-P., Advances on methods and easy separatedsupport materials for enzymes immobilization. TrAC Trends in Analytical Chemistry 2018, 102, 332-342.
37. Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang, T.; Ming, L.-J.; Larsen, R.; Ma, S., How Can Proteins Enter the Interior of a MOF? Investigation of Cytochrome c Translocation into a MOF Consisting of Mesoporous Cages with Microporous Windows. Journal of the American Chemical Society 2012, 134, 13188-91.
38. Lykourinou, V.; Chen, Y.; Wang, X.-S.; Meng, L.; Hoang, T.; Ming, L.-J.; Musselman, R. L.; Ma, S., Immobilization of MP-11 into a Mesoporous Metal–Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis. Journal of the American Chemical Society 2011, 133 (27), 10382-10385.
39. Chanitnun, K.; Pinphanichakarn, P., Glucose(xylose) isomerase production by Streptomyces sp. CH7 grown on agricultural residues. Brazilian Journal of Microbiology 2012, 43, 1084-1093.
40. Li, P.; Moon, S.-Y.; Guelta, M. A.; Lin, L.; Gómez-Gualdrón, D. A.; Snurr, R. Q.; Harvey, S. P.; Hupp, J. T.; Farha, O. K., Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano 2016, 10 (10), 9174-9182.
41. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
42. Bragg, W. H.; Bragg, W. L., The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1997, 88 (605), 428-438.
43. Wu, C.; Chou, L.-Y.; Long, L.; Si, X.; Lo, W.-S.; Tsung, C.-K.; Li, T., Structural Control of Uniform MOF-74 Microcrystals for the Study of Adsorption Kinetics. ACS Applied Materials & Interfaces 2019, 11 (39), 35820-35826.
44. Sánchez-Sánchez, M.; Getachew, N.; Díaz, K.; Díaz-García, M.; Chebude, Y.; Díaz, I., Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chemistry 2015, 17 (3), 1500-1509.
45. Hsu, P.-H.; Chang, C.-C.; Wang, T.-H.; Lam, P. K.; Wei, M.-Y.; Chen, C.-T.; Chen, C.-Y.; Chou, L.-Y.; Shieh, F.-K., Rapid Fabrication of Biocomposites by Encapsulating Enzymes into Zn-MOF-74 via a Mild Water-Based Approach. ACS Applied Materials & Interfaces 2021, 13 (44), 52014-52022.
46. Sánchez-Viesca, F.; Gómez, R., Reactivities Involved in the Seliwanoff Reaction. 2018.
47. Besir, A.; Yazici, F.; Mortas, M.; Gul, O., A novel spectrophotometric method based on Seliwanoff test to determine 5-(Hydroxymethyl) furfural (HMF) in honey: Development, in house validation and application. LWT 2021, 139, 110602.
48. Lever, M., A new reaction for colorimetric determination of carbohydrates. Analytical Biochemistry 1972, 47 (1), 273-279.
49. Moretti, R.; Thorson, J. S., A comparison of sugar indicators enables a universal high-throughput sugar-1-phosphate nucleotidyltransferase assay. Analytical Biochemistry 2008, 377 (2), 251-258.
50. Chanitnun, K.; Pinphanichakarn, P., Glucose(xylose) isomerase production by Streptomyces sp. CH7 grown on agricultural residues. Brazilian Journal of Microbiology 2012, 43, 1084-1093.
51. Ebeling, W.; Hennrich, N.; Klockow, M.; Metz, H.; Orth, H. D.; Lang, H., Proteinase K from Tritirachium album Limber. European Journal of Biochemistry 1974, 47 (1), 91-97.
52. Li, Y.-M.; Yuan, J.; Ren, H.; Ji, C.-Y.; Tao, Y.; Wu, Y.; Chou, L.-Y.; Zhang, Y.-B.; Cheng, L., Fine-Tuning the Micro-Environment to Optimize the Catalytic Activity of Enzymes Immobilized in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society 2021, 143 (37), 15378-15390.
53. Santana, A. G.; Robinson, K.; Vickers, C.; Deen, M. C.; Chen, H.-M.; Zhou, S.; Dai, B.; Fuller, M.; Boraston, A. B.; Vocadlo, D. J.; Clarke, L. A.; Withers, S. G., Pharmacological Chaperones for GCase that Switch Conformation with pH Enhance Enzyme Levels in Gaucher Animal Models. Angewandte Chemie International Edition 2022, 61 (38), e202207974.
54. Liang, W.; Wied, P.; Carraro, F.; Sumby, C. J.; Nidetzky, B.; Tsung, C.-K.; Falcaro, P.; Doonan, C. J., Metal–Organic Framework-Based Enzyme Biocomposites. Chemical Reviews 2021, 121 (3), 1077-1129.
55. Liang, J.; Bin Zulkifli, M. Y.; Yong, J.; Du, Z.; Ao, Z.; Rawal, A.; Scott, J. A.; Harmer, J. R.; Wang, J.; Liang, K., Locking the Ultrasound-Induced Active Conformation of Metalloenzymes in Metal–Organic Frameworks. Journal of the American Chemical Society 2022, 144 (39), 17865-17875.
指導教授 謝發坤 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明