摘要(英) |
This study aims to continue the research conducted in previous studies [17-19] by performing high-cycle fatigue tests on New RC beams. The main objective is to establish an empirical S-N curve suitable for high-strength steel bar and subsequently discuss the design fatigue limit strength (f_(r,limit)) of high-strength steel bars. The results obtained from this study will provide valuable insights for fatigue design of New RC bridge structures.
The current fatigue test results of SD690 New RC beams reveal a significant diameter effect on the S-N curve for larger-sized rebars (>D25). It is observed that as the diameter increases, the fatigue life decreases, leading to a lower design fatigue limit strength. Therefore, we propose an empirical S-N curve suitable for New RC beams.
This study also investigates the differences in fatigue behavior between New RC beams and conventional RC beams. The comparisons include factors such as steel grade (f_y), rebar geometry (r⁄h), rebar diameter effect, and fatigue crack area. Additionally, the study observes the variation of the EcIe value and crack development in New RC beams. Finally, it explores the appropriate design fatigue limit strength, aiming to assess the suitability of current fatigue design specifications, such as the 2002 edition of the AASHTO LRFD Bridge Design Specifications [1-2], and the 2020 edition of the AASHTO LRFD Bridge Design Specifications [3], for fatigue design of New RC beams. |
參考文獻 |
[1] 交通技術標準規範公路類公路工程部,「公路橋梁設計規範」,初版,交通部,臺北市,2009年12月。
[2] American Association of State Highway and Transportation Officials, “Standard Specifications for Highway Bridges”, 17th Edition, 2002.
[3] American Association of State Highway and Transportation Officials, “AASHTO LRFD Bridge Design Specifications”, Ninth Edition, 2020.
[4] ACI Committee 318, “Building Code Requirements for Structural Concrete and Commentary Building Code Requirements for Structural Concrete”, ACI 318-19, American Concrete Institute, 2019.
[5] T. Helgason, J. M. Hanson, N. F. Somes, W. G. Corley, and E. Hongnestad, “Fatigue Strength of High Yield Reinforcing Bars”, National Cooperative Highway Research Program (NCHRP) Report 164, Transportation Research Board, National Research Council, Washington, D.C., 1976.
[6] M. P. Collins, and D. Mitchell, “Prestressed Concrete Structures”, Prentice-Hall, New Jersey, 1991.
[7] J. G. MacGregor, I. C. Jhamb, and N. Nuttall, “Fatigue Strength of Hot Rolled Deformed Reinforcing Bars”, ACI Journal Proceedings, V.68, pp.169-179, March 1971.
[8] H. Zheng, and A. Abel, “Stress Concentration and Fatigue of Profiled Reinforcing Steels”, International Journal of Fatigue, V.20, pp.767-773, November 1998.
[9] G.P. Tilly, “Fatigue of Steel Reinforcement Bars in Concrete: A Review”, Fatigue of Engineering Materials and Structures, V.2, pp.251-268, 1979.
[10] Iris Luijters, Johan Maljaars, and Simon Wijte, “Fatigue strength of rebars embedded in concrete—A numerical approach”, Engineering Fracture Mechanics, 2021.
[11] J. G. MacGregor, and I. C. Jhamb, “Stress Concentrations Caused by Reinforcing Bar Deformations”, ACI Structural Journal, Vol. 41, pp. 169-182, January 1974.
[12] Rocha Marina, “Fatigue behaviour of steel reinforcement bars at very high number of cycles”, EPFL, 2014.
[13] Bianca Kern, Nadja Oneschkow, Anna-Lena Podhajecky, Ludger Lohaus, Steffen Anders, Michael Haist, “Comparative analysis of concrete behaviour under compressive creep and cyclic loading”, International Journal of Fatigue 153, 2021.
[14] E. W. Bennett, and S. E. St J. Muir, “Some fatigue tests of high-strength concrete in axial compression”, Magazine of concrete research, Vol. 19, No. 59, pp. 113-117, June 1967.
[15] 中國土木水利工程學會混凝土工程委員會,「鋼筋混凝土學(土木406-100)」,初版,科技圖書,臺北市,2011年9月。
[16] 中華民國結構工程學會、中華民國地震工程學會、國家地震工程研究中心,「高強度鋼筋混凝土結構設計手冊」,初版,中華民國結構工程學會,臺北市,2017年12月。
[17] 鐘偉綸,「鋼筋混凝土梁疲勞行為之初步研究」,國立中央大學土木工程研究所,碩士論文,指導教授:王勇智,2018年6月。
[18] 洪世峰,「SD690 鋼筋之混凝土梁高週次疲勞試驗」,國立中央大學土木工程研究所,碩士論文,指導教授:王勇智,2020年6月。
[19] 陳亮逸,「SD690大號數鋼筋混凝土梁受高週次疲勞行為」,國立中央大學土木工程研究所,碩士論文,指導教授:王勇智,2022年6。 |