博碩士論文 110223082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.219.40.12
姓名 呂志軒(Chih-Hsuan Lu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成半薩倫二苯基鋁錯合物與催化環酯類開環聚合
(The synthesis of hemi-salen diphenyl aluminum complexes and catalysis of open ring polymerizations with lactones)
相關論文
★ 具二氰基三苯胺之高性能高分子應用於鋰離子電池的電極材料★ 碳酸銫介導正交性一鍋化合成 嘧啶衍生物用以建構新的功能化金屬配體
★ 異位相Pyridine含雙氧原子之BF2-chelated結構其桿狀液晶性質探討及聚氨酯無錫觸媒開發及探討★ 吡啶亞胺鈉及草醯胺鈉錯合物應用於環酯類開環聚合反應
★ 以聯萘酚衍生物作為配位基合成單核鎂金屬錯合物★ 鈉、鉀之四牙配體錯合物用於內酯之開環聚合反應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-26以後開放)
摘要(中) 塑膠造成的汙染已成為嚴重的全球性問題。以生質原料合成出環酯類化合物,再經過開環聚合得到的聚酯,大多具有生物可降解性與生物相容性,能夠降低對非再生能源的依賴,可作為傳統塑膠的替代。本實驗合成一系列hemi-salen配位基,與三苯基鋁反應形成錯合物,再將這些錯合物應用於催化各式環酯類的開環聚合反應,以常見的ε-己內酯(ε-caprolactone, ε-CL)、乳酸交酯(L-lactide, L-LA)建立反應系統,深入探討反應動力學。根據實驗結果,此系列錯合物能夠廣泛催化不同的環酯化合物;立障較大的配位基能使錯合物具有較佳的催化活性。動力學實驗顯示,直接將催化劑、醇類起始劑、環酯類單體混合,為對單體的零級反應;若先將催化劑和起始劑混合,預活化後再加入單體,可以大幅提高反應速率,且轉變為對單體及對催化劑的一級反應,在常溫下CL ROP的kobs 與kp最佳為0.1626 min−1 以及9.5 L mol-1 min-1;而在L-LA ROP的活化能為17.0 kcal mol−1 。將聚合產物以GPC分析,發現零級反應產物的圖譜僅有一個波峰,而一級反應的產物則有兩個波峰,推論活化過的催化劑會形成新的活性物質,加速聚合反應。
摘要(英) Plastic pollution has become a serious global issue. Synthesizing cyclic ester compounds from biomass feedstocks and subsequently undergoing ring-opening polymerization to obtain polyesters can provide biodegradability and biocompatibility, reducing reliance on non-renewable resources and serving as alternatives to traditional plastics. In this experiment, a series of hemi-salen coordination ligands were synthesized and reacted with triphenylaluminum to form complexes. These complexes were then applied in catalyzing the ring-opening polymerization of various cyclic ester compounds, such as ε-caprolactone (ε-CL) and L-lactide (L -LA), to establish reaction systems and explore the reaction kinetics in depth. According to the experimental results, this series of complexes demonstrated broad catalytic activity towards different cyclic ester compounds, with larger ligands providing better catalytic activity. Kinetic experiments showed that directly mixing the catalyst, alcohol initiators, and cyclic ester monomers constituted a zero-order reaction with respect to the monomer. However, pre-activating the catalyst and initiators before adding the monomer significantly increased the reaction rate and transformed it into a first-order reaction with respect to both the monomer and the catalyst. For the CL ROP reaction at room temperature, the optimal kobs and kp were determined to be 0.1626 min−1 and 9.5 L mol−1 min−1, respectively. For the L -LA ROP reaction at higher temperatures, the activation energy was found to be 17.0 kcal mol−1. Gel permeation chromatography (GPC) analysis of the polymerization products revealed that the spectra of the zero-order reaction products exhibited a single peak, while the spectra of the first-order reaction products displayed two peaks. This suggests that the activated catalyst forms new active species, accelerating the polymerization reaction.
關鍵字(中) ★ 開環聚合
★ 聚酯
關鍵字(英) ★ polymerizations
★ polyester
論文目次 摘要 I
Abstract II
圖目錄 VI
表目錄 VIII
一、 緒論 1
1-1 前言 1
1-2 聚酯類化合物 2
1-3 金屬催化劑的設計與改良 4
二、 鑑定儀器與實驗藥品 28
2-1 鑑定儀器 28
2-2 溶劑與藥品處理 30
三、 實驗步驟 33
3-1 單體合成 33
3-2 配位基合成 35
3-2-1 3,5-di-tert-butyl-2-hydroxybenzaldehyde合成 35
3-2-2 6-Ia 合成 36
3-2-3 6-Ib 合成 37
3-2-4 6-Ic 合成 38
3-3 錯合物合成 39
3-3-1 三苯基鋁合成 39
3-3-2 6-IaP 合成 40
3-3-3 6-IbP 合成 42
3-3-4 6-IcP 合成 43
3-4 開環聚合反應 45
3-4-1 常溫下的開環聚合 45
3-4-2 高溫下的L-LA開環聚合 46
3-4-3 轉換率與聚合物的分子量測定 47
3-4-4 動力學分析 48
四、 結果與討論 50
4-1 錯合物合成與結構鑑定 50
4-2 錯合物的開環聚合活性測試 54
4-3 常溫下ε-CL的開環聚合動力學研究 58
4-3-1 6-IaP對ε-CL開環聚合的動力學研究 67
4-3-2 6-IbP對ε-CL開環聚合的動力學研究 70
4-3-3 6-IcP對ε-CL開環聚合的動力學研究 73
4-3-3-1 三種催化劑的比較 76
4-3-4 不同[Al]下的kobs 79
4-4 高溫下L-LA的開環聚合動力學研究 84
4-5 甲基與苯基錯合物的比較 94
五、 結論 97
參考文獻 98
附錄一 NMR圖譜 106
附錄二 GPC圖譜 227
附錄三 6-IaP的晶體資料 229
參考文獻 [1] Borrelle, S. B.; Ringma, J.; Law, K. L.; Monnahan, C. C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G. H.; Hilleary, M. A.; Eriksen, M.; Possingham, H. P.; De Frond, H.; Gerber, L. R.; Polidoro, B.; Tahir, A.; Bernard, M.; Mallos, N.; Barnes, M.; Rochman, C. M.,
“Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution.”
Science, 369 (6510), 2020, 1515-1518.
[2] Henton, D.; Gruber, P.; Lunt, J.; Randall, J.,
In Natural Fibers, Biopolymers and Biocomposites.
CRC Press: Boca Raton, 2005, p 527-577
[3] Thomas, C. M.,
“Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures.”
Chem. Soc. Rev., 39 (1), 2010, 165-173.
[4] Ha, C.-S.; Gardella, J. A.,
“Surface Chemistry of Biodegradable Polymers for Drug Delivery Systems.”
Chem. Rev., 105 (11), 2005, 4205-4232.
[5] Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D.,
“Controlled Ring-Opening Polymerization of Lactide and Glycolide.”
Chem. Rev., 104 (12), 2004, 6147-6176.
[6] Sharma, S. K.; Mudhoo, A.,
A handbook of applied biopolymer technology: synthesis, degradation and applications.
Royal society of chemistry, 2011, 159-160
[7] Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H.,
“Polylactic acid (PLA) controlled delivery carriers for biomedical applications.”
Adv. Drug Deliv. Rev., 107, 2016, 163-175.
[8] Pappalardo, D.; Annunziata, L.; Pellecchia, C.,
“Living Ring-Opening Homo- and Copolymerization of ε-Caprolactone and l- and d,l-Lactides by Dimethyl(salicylaldiminato)aluminum Compounds.”
Macromolecules, 42 (16), 2009, 6056-6062.
[9] Gruszka, W.; Lykkeberg, A.; Nichol, G. S.; Shaver, M. P.; Buchard, A.; Garden, J. A.,
“Combining alkali metals and zinc to harness heterometallic cooperativity in cyclic ester ring-opening polymerisation.”
Chem. Sci., 11 (43), 2020, 11785-11790.
[10] Saito, T.; Aizawa, Y.; Yamamoto, T.; Tajima, K.; Isono, T.; Satoh, T.,
“Alkali Metal Carboxylate as an Efficient and Simple Catalyst for Ring-Opening Polymerization of Cyclic Esters.”
Macromolecules, 51 (3), 2018, 689-696.
[11] Sun, Y.; Xiong, J.; Dai, Z.; Pan, X.; Tang, N.; Wu, J.,
“Stereoselective Alkali-Metal Catalysts for Highly Isotactic Poly(rac-lactide) Synthesis.”
Inorg. Chem., 55 (1), 2016, 136-143.
[12] Wang, H.; Yang, Y.; Ma, H.,
“Stereoselectivity switch between zinc and magnesium initiators in the polymerization of rac-lactide: different coordination chemistry, different stereocontrol mechanisms.”
Macromolecules, 47 (22), 2014, 7750-7764.
[13] Chen, R.; Ma, H.,
“Magnesium Complexes Supported by 6,6’-Dimethylbiphenyl-Bridged Salen Ligands: Synthesis, Characterization and Catalysis for rac-Lactide Polymerization.”
Eur. J. Inorg. Chem., 26 (14), 2023, e202200775.
[14] Sagar, S.; Bano, K.; Sarkar, A.; Pal, K.; Panda, T. K.,
“Magnesium Promoted Active and Isoselective ROP of rac-Lactide and ϵ-Caprolactone Under Mild Conditions.”
Eur. J. Inorg. Chem., 2022 (34), 2022, e202200494.
[15] Duan, R.; Hu, C.; Li, X.; Pang, X.; Sun, Z.; Chen, X.; Wang, X.,
“Air-Stable Salen–Iron Complexes: Stereoselective Catalysts for Lactide and ε-Caprolactone Polymerization through in Situ Initiation.”
Macromolecules, 50 (23), 2017, 9188-9195.
[16] Driscoll, O. J.; Leung, C. K. C.; Mahon, M. F.; McKeown, P.; Jones, M. D.,
“Iron(III) Salalen Complexes for the Polymerisation of Lactide.”
Eur. J. Inorg. Chem., 2018 (47), 2018, 5129-5135.
[17] Marin, P.; Tschan, M. J. L.; Isnard, F.; Robert, C.; Haquette, P.; Trivelli, X.; Chamoreau, L. M.; Guérineau, V.; Del Rosal, I.; Maron, L.,
“Polymerization of rac‐Lactide Using Achiral Iron Complexes: Access to Thermally Stable Stereocomplexes.”
Angew. Chem. Int. Ed., 58 (36), 2019, 12585-12589.
[18] Huang, T.-W.; Su, R.-R.; Lin, Y.-C.; Lai, H.-Y.; Yang, C.-Y.; Senadi, G. C.; Lai, Y.-C.; Chiang, M. Y.; Chen, H.-Y.,
“Improvement in aluminum complexes bearing a Schiff base in ring-opening polymerization of ε-caprolactone: the synergy of the N,S-Schiff base in a five-membered ring aluminum system.”
Dalton trans., 47 (43), 2018, 15565-15573.
[19] Oishi, M.; Ichinose, Y.; Iwata, N.; Nomura, N.,
“Ring-Opening Polymerization of ε-Caprolactone Initiated by Multinuclear Aluminum Methanetris(aryloxido) Complexes.”
Organometallics, 38 (21), 2019, 4233-4243.
[20] Normand, M.; Kirillov, E.; Roisnel, T.; Carpentier, J.-F.,
“Meerwein–Ponndorf–Verley-Type Reduction Processes in Aluminum and Indium Isopropoxide Complexes of Imino-Phenolate Ligands.”
Organometallics, 31 (15), 2012, 5511-5519.
[21] Deacy, A. C.; Durr, C. B.; Kerr, R. W. F.; Williams, C. K.,
“Heterodinuclear catalysts Zn(ii)/M and Mg(ii)/M, where M = Na(i), Ca(ii) or Cd(ii), for phthalic anhydride/cyclohexene oxide ring opening copolymerisation.”
Catal. Sci. Technol., 11 (9), 2021, 3109-3118.
[22] Abbina, S.; Du, G.,
“Zinc-Catalyzed Highly Isoselective Ring Opening Polymerization of rac-Lactide.”
ACS Macro Lett., 3 (7), 2014, 689-692.
[23] Wang, H.; Yang, Y.; Ma, H.,
“Exploring Steric Effects in Diastereoselective Synthesis of Chiral Aminophenolate Zinc Complexes and Stereoselective Ring-Opening Polymerization of rac-Lactide.”
Inorg. Chem., 55 (15), 2016, 7356-7372.
[24] Kan, C.; Hu, J.; Huang, Y.; Wang, H.; Ma, H.,
“Highly Isoselective and Active Zinc Catalysts for rac-Lactide Polymerization: Effect of Pendant Groups of Aminophenolate Ligands.”
Macromolecules, 50 (20), 2017, 7911-7919.
[25] Ouhadi, T.; Stevens, C.; Teyssié, P.,
“Mechanism of ε-Caprolactone polymerization by Aluminum Alkoxides.”
Makromol. Chem., 1 (S19751), 1975, 191-201.
[26] Belleney, J.; Wisniewski, M.; Le Borgne, A.,
“Influence of the nature of the ligand on the microstructure of poly d,l-lactides prepared with organoaluminum initiators.”
Eur. Polym. J., 40 (3), 2004, 523-530.
[27] Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; Pugh, R. I.; White, A. J. P.,
“Study of ligand substituent effects on the rate and stereoselectivity of lactide polymerization using aluminum salen-type initiators.”
Proc. Natl. Acad. Sci. U.S.A., 103 (42), 2006, 15343-15348.
[28] Nomura, N.; Aoyama, T.; Ishii, R.; Kondo, T.,
“Salicylaldimine−Aluminum Complexes for the Facile and Efficient Ring-Opening Polymerization of ε-Caprolactone.”
Macromolecules, 38 (13), 2005, 5363-5366.
[29] Nomura, N.; Ishii, R.; Yamamoto, Y.; Kondo, T.,
“Stereoselective Ring-Opening Polymerization of a Racemic Lactide by Using Achiral Salen– and Homosalen–Aluminum Complexes.”
Chem. Eur. J., 13 (16), 2007, 4433-4451.
[30] Kirk, S. M.; Kociok-Köhn, G.; Jones, M. D.,
“Zirconium vs Aluminum Salalen Initiators for the Production of Biopolymers.”
Organometallics, 35 (22), 2016, 3837-3843.
[31] Normand, M.; Dorcet, V.; Kirillov, E.; Carpentier, J.-F.,
“{Phenoxy-imine}aluminum versus -indium Complexes for the Immortal ROP of Lactide: Different Stereocontrol, Different Mechanisms.”
Organometallics, 32 (6), 2013, 1694-1709.
[32] Zhang, W.; Wang, Y.; Sun, W.-H.; Wang, L.; Redshaw, C.,
“Dimethylaluminium aldiminophenolates: synthesis, characterization and ring-opening polymerization behavior towards lactides.”
Dalton trans., 41 (38), 2012, 11587-11596.
[33] Iwasa, N.; Katao, S.; Liu, J.; Fujiki, M.; Furukawa, Y.; Nomura, K.,
“Notable Effect of Fluoro Substituents in the Imino Group in Ring-Opening Polymerization of ε-Caprolactone by Al Complexes Containing Phenoxyimine Ligands.”
Organometallics, 28 (7), 2009, 2179-2187.
[34] 杨长安,
“(1R, 2R)-反式环己烷二甲酸的合成工艺.”
精细化工, 30 (9), 2013, 1046-1051.
[35] Zhu, J.-B.; Watson, E. M.; Tang, J.; Chen, E. Y.-X.,
“A synthetic polymer system with repeatable chemical recyclability.”
Science, 360 (6387), 2018, 398-403.
[36] Zeng, C.; Yuan, D.; Zhao, B.; Yao, Y.,
“Highly Enantioselective Epoxidation of α,β-Unsaturated Ketones Catalyzed by Rare-Earth Amides [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 with Phenoxy-Functionalized Chiral Prolinols.”
Org. Lett., 17 (9), 2015, 2242-2245.
[37] Srini, V.; De Mel, J.; Oliver, J. P.,
“Synthesis and structure of the sterically crowded trimesitylaluminum-tetrahydrofuran adduct.”
Organometallics, 8 (3), 1989, 827-830.
[38] National Institute of Standards and Technology List of Experimental Diatomic Bond Lengths. https://cccbdb.nist.gov/diatomicexpbondx.asp (accessed July 10).
[39] Li, F.; Rastogi, S.; Romano, D.,
“Synthesis of Ultrahigh Molecular Weight PLAs Using a Phenoxy-Imine Al(III) Complex.”
ACS Omega, 5 (38), 2020, 24230-24238.
[40] Chang, M.-C.; Lu, W.-Y.; Chang, H.-Y.; Lai, Y.-C.; Chiang, M. Y.; Chen, H.-Y.; Chen, H.-Y.,
“Comparative Study of Aluminum Complexes Bearing N,O- and N,S-Schiff Base in Ring-Opening Polymerization of ε-Caprolactone and l-Lactide.”
Inorg. Chem., 54 (23), 2015, 11292-11298.
[41] Alemán, C.; Betran, O.; Casanovas, J.; Houk, K. N.; Hall, H. K., Jr.,
“Thermodynamic Control of the Polymerizability of Five-, Six-, and Seven-Membered Lactones.”
J. Org. Chem., 74 (16), 2009, 6237-6244.
[42] Hong, M.; Chen, E. Y. X.,
“Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone.”
Nat. Chem., 8 (1), 2016, 42-49.
[43] Save, M.; Schappacher, M.; Soum, A.,
“Controlled Ring-Opening Polymerization of Lactones and Lactides Initiated by Lanthanum Isopropoxide, 1. General Aspects and Kinetics.”
Macromol. Chem. Phys., 203 (5-6), 2002, 889-899.
[44] Huang, Y.; Wang, W.; Lin, C.-C.; Blake, M. P.; Clark, L.; Schwarz, A. D.; Mountford, P.,
“Potassium, zinc, and magnesium complexes of a bulky OOO-tridentate bis(phenolate) ligand: synthesis, structures, and studies of cyclic ester polymerisation.”
Dalton trans., 42 (25), 2013, 9313-9324.
[45] Ding, K.; Miranda, M. O.; Moscato-Goodpaster, B.; Ajellal, N.; Breyfogle, L. E.; Hermes, E. D.; Schaller, C. P.; Roe, S. E.; Cramer, C. J.; Hillmyer, M. A.; Tolman, W. B.,
“Roles of Monomer Binding and Alkoxide Nucleophilicity in Aluminum-Catalyzed Polymerization of ε-Caprolactone.”
Macromolecules, 45 (13), 2012, 5387-5396.
[46] Bouyahyi, M.; Roisnel, T.; Carpentier, J.-F.,
“Aluminum Complexes of Bidentate Fluorinated Alkoxy-Imino Ligands: Syntheses, Structures, and Use in Ring-Opening Polymerization of Cyclic Esters.”
Organometallics, 31 (4), 2012, 1458-1466.
[47] Wang, X.; Zhao, K.-Q.; Al-Khafaji, Y.; Mo, S.; Prior, T. J.; Elsegood, M. R. J.; Redshaw, C.,
“Organoaluminium Complexes Derived from Anilines or Schiff Bases for the Ring-Opening Polymerization of ε-Caprolactone, δ-Valerolactone and rac-Lactide.”
Eur. J. Inorg. Chem., 2017 (13), 2017, 1951-1965.
[48] Shi, T.; Luo, W.; Liu, S.; Li, Z.,
“Controlled random copolymerization of rac-lactide and ɛ-caprolactone by well-designed phenoxyimine Al complexes.”
J. Polym. Sci., Part A: Polym. Chem., 56 (6), 2018, 611-617.
指導教授 吳國暉(Kuo-Hui Wu) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明