博碩士論文 111322030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.220.130.220
姓名 林軒宇(Hsuan-Yu Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 建築物RC梁塑性絞外移設計與實例探討
(Study on RC beams in Buildings about Plastic Hinge Relocation Design with Practical Examples)
相關論文
★ 變厚度X形消能裝置初步研究★ FRP筋對混凝土柱圍束效應之研究
★ 高強度鋼筋混凝土剪力牆連接梁耐震配筋之研究★ 高拉力SD690鋼筋截斷設計之研究
★ 高強度鋼筋混凝土梁構件耐震設計參數之研究★ 鋼筋混凝土梁疲勞行為之初步研究
★ 高拉力鋼筋混凝土滑移剪力設計之研究★ 鋼筋混凝土梁有斜向鋼筋配置之耐震性能提升研究
★ 非韌性鋼筋混凝土梁柱外接頭補強之研究★ 新澆置鋼筋混凝土梁受反覆荷重之影響
★ 非韌性鋼筋混凝土梁柱內接頭補強之研究★ 鋼筋混凝土擴柱補強工法對非韌性梁柱接頭耐震能力提升之探討
★ 雙層兩跨鋼筋混凝土抗彎構架耐震測試★ 受損RC梁柱接頭補強之耐震成效評估
★ 現有鋼筋混凝土建築物之耐震能力評估 ―以紐西蘭評估方法為基礎★ 桁架軟化模式應用於無水平箍筋梁柱接頭剪力及變形曲線預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本研究繼郭育廷[43]之研究,整理近年來國內外關於鋼筋混凝土梁柱接頭塑性鉸外移試驗成果[6-22],歸納塑性鉸外移設計形式相關建議以及要點,並以紐西蘭規範NZS3101-2006規定為基礎,提出完整塑性鉸外移設計程序。另外,透過上述蒐集之一般梁試體試驗成果以統計方法檢測高剪應力破壞模式檢核公式的保守性,並建立相關資料庫提供參考。同時利用ETABS、REVIT等商用程式進行實務設計流程之模擬,以探討現場施作塑鉸外移及斜向鋼筋所可能遇到之問題並提出應對方案。
藉由統整國內外試驗有發生剪力滑移行為試體表現,提出剪力滑移破壞特徵,屬於脆性破壞模式,並且常發生在試體於最大載重產生後,試體剪力強度急速下降,並且以統計結果說明,當剪應力過大時可藉加設斜筋來控制試體垂直滑移行為。
模擬案例研究中,利用紐西蘭NZS3101規定剪力滑移設計以及美國ACI318規定剪力摩擦設計模式共配置三種不同形式塑鉸外移改良梁,並藉由BIM方法進行鋼筋配置3D視覺化,在案例一配置額外D29彎起筋當中,彎起強化箍筋與傳統剪力設計橫向箍筋間距過小,在現場有難以澆置之疑慮,相較案例二配置D29斜向直筋橫向箍筋間距較大,對於現地施工較為容易,建議多以案例二之斜向鋼筋複合彎起鋼筋形式進行塑鉸外移設計,有較好的施工性並能有效控制滑移破壞產生。利用ACI剪力摩擦概念檢核發現,案例三以縱向鋼筋插筋作用能符合剪力摩擦需求,且在三種案例中額外鋼筋使用量最少,施工性最佳,惟此案例無配置斜向筋有滑移破壞風險。為此,對於高剪應力作用使滑移風險較高的長跨梁而言,建議採斜向鋼筋配置進行,若其風險較低則建議取剪力摩擦插筋形式進行。
摘要(英) This study is a simple simulation for designing practical reinforced concrete beam-column joints with a design innovation called as design of plastic hinge relocation adopted from Guo[43] and other researchers[6-22]. A database was collected with specimens tested in failure mode of plastic hinge relocation or sliding shear. Several design recommandation was also collected to build the complete plastic hinge relocation design, basically referred from New Zealand design code NZS3101-2006. To perform the building structural analysis, commercial software ETABS and AutoDesk Revit was used.
By studying the measured values of the specimens with sliding shear failure adopted from references, it is concluded that sliding shear failure belongs to the brittle failure mode, and it often occurs after the specimen has the maximum load of the tested specimens, then the strength of the specimen drops suddenly. The statistical results show that when the shear stress is very high, the vertical sliding behavior of the specimen can be prevented by adding diagonal reinforcements.
In the design case study, using NZS3101 sliding shear design method and ACI318 shear friction design method to configure three different types of modified beams with plastic hinge relocation. Meanwhile, the reinforcement configurationwill be checked by the means of BIM for 3D visualization. In Case 1, with additional D29 bent-up rebar, the space between bending strengthening reinforcement and traditional shear design transverse reinforcement is smaller than Case 2 with combination of diagonal rebar and bent-up rebar. Considered about the steel bar constructability between Case 1 and Case2, it was recommended to utilize Case 2 to accomplish plastic hinge relocation design with sliding shear control. This will make not only reinforcement set up but also concrete casting become easier in-site. In Case3, the result shows the us longitudinal rebar can provide enough dowel force to resist shear friction, and the amount of reinforcement used in the three cases is the least, and the construction is easier. However, in this case, there is high risk for shear sliding due to the no diagonal rebar was placed. For the reason, for long-span beams with high shear sliding risk caused by high shear stress, it is recommended to adopt diagonal rebar configuration, and if the risk is low, it is recommended to adopt the form of shear friction method with longitudinal rebar as dowel bar.
關鍵字(中) ★ 塑性絞外移設計
★ 耐震設計
★ 斜向鋼筋
★ 拉力外移
★ ETABS
★ REVIT
★ 細部鋼筋配置
關鍵字(英) ★ Plastic Hinge Relocation Design
★ Seismic Design
★ Diagonal Reinforcement
★ Tension Shift
★ ETABS
★ REVIT
★ Detailed Rebar Placement
論文目次 第一章 緒論 1
1.1  研究動機與目的 1
1.2  研究方法 2
第二章 文獻回顧 3
2.1  塑鉸外移設計 3
2.2  剪力滑移(Sliding shear) 7
2.3  剪力摩擦(Frictional shear) 10
2.4  拉力外移理論 11
2.5  剪力遲滯(Shear lag effect)效應 13
2.6  國內RC梁基本設計 14
2.7  耐震設計篇特殊規定 19
第三章 塑鉸外移設計相關探討及分析 23
3.1  塑鉸外移設計 23
3.2  斜向鋼筋設計討論 27
3.3  文獻資料庫蒐集及驗證 29
3.4  設計及檢核方法 33
第四章 程式簡介及研究建模步驟 36
4.1  ETABS建模方法 36
4.2  AutoDesk Revit建模方法 39
第五章 實例說明與討論 44
5.1  RC結構設計 44
5.2  細部設計探討 48
第六章 結論與建議 53
6.1  結論 53
6.2  建議 54
參考文獻 55
附錄一 結構靜力分析計算 140
附錄二 案例梁基本設計 146
附錄三 塑鉸外移設計計算書 150
附錄四 T型梁塑鉸外移檢核計算書 160
參考文獻 [1]Pauley, T.. “Developments in the Seismic Design of Reinforced Concrete Frames in New Zealand, Department of Civil Engineering”, University of Canterbury, Christchruch, New Zealand, pp. 91-113, 1980.
[2]NZS 3101. Concrete Structural Standard New Zealand Standard, The design of Concrete Structures and Commentary on the Design of Concrete Structures, New Zealand Standard, 2006.
[3]ACI Committee 318. Building Requirements for Structural Concrete , ACI 318-19 and Commentary, American Concrete Institute, 2019.
[4]Paulay, T. and Priestley, M.J.N.. Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley and Sons, New York, 1992.
[5]Alavi-Dehkordi, S., Mostofinejad, D. and Alaee, P.. Effects of high-strength reinforcing bars and concrete on seismic behavior of RC beam-column joints, Engineering Structures, Vol. 183, March, pp. 702-719, 2019.
[6]Akhlaghi, A. and Mostofinejad, D.. Experimental and analytical assessment of different anchorage systems used for CFRP flexurally retrofitted exterior RC beam-column connections, Structures, Vol. 28, September, pp. 881-893, 2020.
[7]Chutarat, N. and Aboutaha R.S.. Cyclic response of exterior reinforced concrete beam-column joints reinforced with Headed Bars – Experimental Investigation, ACI Structural Journal, Vol. 100, No. 2, pp. 259-264, 2003.
[8]Eom, T.S., Park, H.G., A.M.ASCE. Hwang, H.J. and Kang, S.M., “Plastic hinge relocation methods for emulative PC beam-column connections”, American Society of Civil Engineers, 2015.
[9]Eslami, A., and Ronagh, H. R.. Experimental investigation of an appropriate anchorage system for flange-bonded CFRP in retrofitted RC beam-column joints. Journal of Composites for Construction, Vol. 18, No. 4, 2014.
[10]Galunic, B., Bertero, V. V., and Popov, E. P.. “An approach for improving seismic behavior of reinforced concrete interior joints”, College of Engineering, University of California, Vol. 77, No. 30, 1977.
[11]Hwang, H.J. , Eom, T.S. and Park, H.G.. Design considerations for interior RC beam-column joint with additional bars, Engineering Structures, Vol. 98, September, pp. 1-13, 2015.
[12]Maheri, M.R. and Torabi, A.. Retrofitting external RC beam-column joints of joints of an ordinary MRF through plastic hinge relocation using FRP laminates, Structures, Vol. 22, pp. 65-75, 2019.
[13]Oudah, F. and El-Haacha, R.. Plastic hinge relocation using the RC slotted-beam column connection, NCEE, Frontiers of Earthquake Engineering, Tenth U.S. National Conference on Earthquake Engineering, July, 2014.
[14]Oudah, F. and El-Haacha, R.. Seismic performance of modified single-sotted beam-concrete connection, Journal of Earthquake Engineering, Vol. 21, pp. 726-751, 2016.
[15]Oudah, F. and El-Haacha, R.. Plastic hinge relocation in concrete structures using the double-slotted-beam system , Bulletin of Earthquake Engineering, Vol. 15, No. 5, pp. 2173-2199, 2017.
[16]Pauley, T. and Scarpas, A.. The behavior of exterior beam-column joints, Bulletin of the New Zealand national society for earthquake engineering, Vol. 14, No. 3, pp. 131-144, 1981.
[17]Park, R. and Milburn, J. R.. Comparison of recent New Zealand and United States seismic design provisions for reinforced concrete beam-column joints and test results from four units designed according to the New Zealand code, Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 16, No. 1, pp. 3-24, 1983.
[18]Sharif, M.R. and Ketabi, M.S.. An improved plastic hinge relocation technique for RC beam-column joints : experimental and numerical investigations, Bulletin of Earthquake Engineering, Vol. 18, No. 9, pp. 4191-4225, 2020.
[19]Shen, X.Y., Li, B., Chen, Y.T. and Tizani, W.. Seismic performance of reinforced concrete interior beam-column joints with novel reinforcement detail, Vol. 227, 2021.
[20]Shen, X., Li, B., Chen, Y. T., Tizani, W., and Jiang, Y.. Relocating plastic hinges in reinforced concrete beam-column joints by mechanically anchored diagonal bars. Engineering Structures, Vol. 251, 2022.
[21]Shoukry, M. E., Tarabia, A. M., and Abdelrahman, M. Z.. Seismic retrofit of deficient exterior RC beam-column joints using steel plates and angles. Alexandria Engineering Journal, Vol. 61, No. 4, pp. 3147-3164, 2022.
[22]Torabi, A., and Maheri, M. R.. Seismic repair and retrofit of RC beam–column joints using stiffened steel plates. Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 41, pp. 13-26, 2017.
[23]石川裕次, 麻生直木, 中根一臣and 平林聖尊. RC ヒンジリロケーション接合部の実用化, コンクリート工学, Vol. 52, No 7, pp. 573-581, 2014.
[24]城攻, 後藤康明, and柴田拓二. 梁の塑性ヒンジ発生域制御による RC 骨組の復元力特性改善. コンクリート工学年次講演会論文集, 日本, Vol.8, pp. 629-632, 1986.
[25]Bertero, V. V., Popov, E.P. and Wang, T.Y.. “Hysteretic behavior of reinforced concrete flexural members with special web reinforcement.”, Earthquake Engineering Research Center, University of California, Berkerley, USA, 1974.
[26]Abdel-Fattah, B. and Wight, J.K.. Study of moving beam plastic hinging zones for earthquake-resistant design of R/C buildings, ACI Structural Journal, Vol. 84, pp. 34-39, 1987.
[27]Dalabashi, A., Eslami, A. and Ronagh, H.R.. Plastic hinge relocation in RC joints as an alternative method of retrofitting using FRP, Composite Structures, Vol. 94, pp. 2433-2429, 2012.
[28]Oukubo, M., Matsuoka, T., Yoshioka, T. and Anderson, D.L.. Shear transfer mechanism of reinforced concrete beams with a slot at the beam-end, コンクリート工学次論文報告集, 日本, Vol. 21, No. 3, pp. 523-528, 1999.
[29]Moehle, J.. Seismic design of reinforced concrete buildings., McGraw-Hill Education, USA, pp. 203-205, 2015.
[30]Ueda, T., Sato, Y., Ito, T. and Nishizono, K.. Shear deformation of reinforced concrete beam, 土木学会論文集, No. 711, pp. 205-215, 2002.
[31]Wang, Y. C.. Analytical and experimental study on seismic performance of RC T-beams with design deficiency in steel bar curtailment, Engineering structures, Vol. 25, pp. 215-227, 2003.
[32]Lee, J. Y., and Park, J.. “Effect of Strain Penetration on RC Beam–Column Joints Subjected to Seismic Loading”, Concrete Structures in Earthquake, pp. 309-327, Singapore, 2019.
[33]Derecho, A. T., and Kianoush, M. R.. “Seismic design of reinforced concrete structures”, pp. 463-561, 2001.
[34]Paulay, T.. Seismic design in reinforced concrete: The state of the art in New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 21, No. 3, pp. 208-232, 1988.
[35]內政部營建署,「建築技術規則」,民國110年。
[36]內政部營建署,「建築物耐震設計規範及解說」,民國111年。
[37]內政部營建署,「混凝土結構設計規範」,民國110年。
[38]中華土木水利工程學會,「混凝土工程設計規範與解說(土木401-110)」,民國110年。
[39]土木水利工程學會混凝土工程委員會,「鋼筋混凝土學 (土木406-111) 」,民國111年。
[40]游凱翔,「高拉力鋼筋混凝土梁塑性鉸位置外移設計之研究」,國立中央大學碩士論文,指導教授:王勇智,民國106年。
[41]康佳榮,「鋼筋混凝土梁剪力滑移之研究」,國立中央大學碩士論文,指導教授:王勇智,民國107年。
[42]鄭宇君,「高拉力鋼筋混凝土梁剪力滑移之研究」,國立中央大學碩士論文,民國109年。
[43]郭育廷,「鋼筋混凝土梁有斜向鋼筋配置之耐震性能提升研究」,國立中央大學碩士論文,指導教授:王勇智,民國109年。
[44]薛強,陳國慶,「建築物耐震性能設計規範之研擬—子計畫二:範例研究」,中華民國內政部建築研究所委託研究報告,民國94年。
[45]李森枏,「ETABS入門與工程上之應用」,民國92年。
[46]劉俊成,「Revit於鋼筋混凝土結構建模實例探討」,國立交通大學碩士論文,指導教授:林昌佑,民國106年。
[47]陳亦信,「因應規範發展潮流之配筋細節探討」,土木水利,第41卷第二期,第34-43頁,2014。
指導教授 王勇智(Yung-Chih Wang) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明