參考文獻 |
[1]. Essmeister,J.,Altun,A.A.,Staudacher,M.,Lube,T.,Schwentenwein,M.,andKonegger, T. (2022). Stereolithography-based additive manufacturing of polymer-derived SiOC/SiC ceramic composites. Journal of the European Ceramic Society, 42(13), 5343-5354.
[2]. Buswell, R. A., Soar, R. C., Gibb, A. G., andThorpe, A. (2007). Freeform construction: mega-scale rapid manufacturing for construction. Automation in construction, 16(2), 224-231.
[3]. Cano-Vicent,A.,Tambuwala,M.M.,Hassan,S.S.,Barh,D.,Aljabali,A.A.,Birkett,M., and Serrano-Aroca, Á. (2021). Fused deposition modelling: Current status, methodology, applications and future prospects. Additive Manufacturing, 47, 102378.
[4]. Pegna, J. (1997). Exploratory investigation of solid freeform construction. Automation in construction, 5(5), 427-437.
[5]. Khoshnevis, B. (2004). Automated construction by contour crafting—related robotics and information technologies. Automation in construction, 13(1), 5-19.
[6]. Ma, G., Buswell, R., da Silva, W. R. L., Wang, L., Xu, J., and Jones, S. Z. (2022). Technology readiness: A global snapshot of 3D concrete printing and the frontiers for development. Cement and Concrete Research, 156, 106774.
[7]. Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G., andThorpe, T. (2012). Developments in construction-scale additive manufacturing processes. Automation in construction, 21, 262-268.
[8]. Zhang,C.,Nerella,V.N.,Krishna,A.,Wang,S.,Zhang,Y.,Mechtcherine,V.,andBanthia, N. (2021). Mix design concepts for 3D printable concrete: A review. Cement and Concrete Composites, 122, 104155.
191
[9]. Zhang,J.,Wang,J.,Dong,S.,Yu,X.,andHan,B.(2019).Areviewofthecurrentprogress and application of 3D printing concrete. Composites Part A: Applied Science and Manufacturing, 125, 105533..
[10].Salet, T. A., Ahmed, Z. Y., Bos, F. P., andLaagland, H. L. (2018). Design of a 3D printed concrete bridge by testing. Virtual and Physical Prototyping, 13(3), 222-236.
[11].Hager, I., Golonka, A., andPutanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction?. Procedia Engineering, 151, 292- 299.
[12].Mechtcherine, V., Bos, F. P., Perrot, A., Da Silva, W. L., Nerella, V. N., Fataei, S., ... andRoussel, N. (2020). Extrusion-based additive manufacturing with cement-based materials–production steps, processes, and their underlying physics: a review. Cement and Concrete Research, 132, 106037.
[13].Suiker, A. S. J. (2018). Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments. International Journal of Mechanical Sciences, 137, 145-170.
[14].Nerella, V. N., Näther, M., Iqbal, A., Butler, M., andMechtcherine, V. (2019). Inline quantification of extrudability of cementitious materials for digital construction. Cement and Concrete Composites, 95, 260-270.
[15].Chen, Y., He, S., Gan, Y., Çopuroğlu, O., Veer, F., andSchlangen, E. (2022). A review of printing strategies, sustainable cementitious materials and characterization methods in the context of extrusion-based 3D concrete printing. Journal of Building Engineering, 45, 103599.
[16].Perrot, A., Rangeard, D., Melinge, Y., Estelle, P., and Lanos, C. (2009). Extrusion criterion for firm cement-based materials. Applied Rheology, 19(5), 53042-1.
192
[17].田澤皓,(2020),「3D 列印混凝土層間界面的力學和耐久性能研究」,碩士論文, 河北工業大學。
[18].Paul, S. C., van Zijl, G. P. A. ., Tan, M. J., andGibson, I. (2018). A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyping Journal.
[19].Roussel, N. (2018). “Rheological requirements for printable concretes.” Cement and Concrete Research, 112, 76-85.
[20].Hou, S., Duan, Z., Xiao, J., andYe, J. (2020). “A review of 3D printed concrete: Performance requirements, testing measurements and mix design.” Construction and Building Materials, 121745.
[21].Yu, K., McGee, W., Ng, T. Y., Zhu, H., andLi, V. C. (2021). “3D-printable engineered cementitious composites (3DP-ECC): Fresh and hardened properties.” Cement and Concrete Research, 143, 106388.
[22].Ji, G., Ding, T., Xiao, J., Du, S., Li, J. and Duan, Z. (2019). “A 3D Printed Ready-Mixed Concrete Power Distribution Substation: Materials and Construction Technology.” Materials, 12(9), 1540.
[23].Toutou, Z., Roussel, N., andLanos, C. (2005). The squeezing test: a tool to identify firm cement-based material′s rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research, 35(10), 1891-1899.
[24].Ma, G., Li, Z., andWang, L. (2018). Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Construction and building materials, 162, 613-627.
[25].Choi, M. S., Kim, Y. J., andKim, J. K. (2014). Prediction of concrete pumping using various rheological models. International Journal of Concrete Structures and Materials, 8, 269-278.
193
[26].Feys, D., Khayat, K. H., andKhatib, R. (2016). How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure?. Cement and Concrete Composites, 66, 38-46
[27].Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G., andThorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and structures, 45, 1221-1232.
[28].Liu, C., Wang, X., Chen, Y., Zhang, C., Ma, L., Deng, Z., ... and Banthia, N. (2021). Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete. Cement and Concrete Composites, 122, 104158.
[29].Tay, Y. W. D., Qian, Y., andTan, M. J. (2019). Printability region for 3D concrete printing using slump and slump flow test. Composites Part B: Engineering, 174, 106968.
[30].Wolfs, R. J. M., Bos, F. P., andSalet, T. A. M. (2019). Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research, 119, 132-140.
[31].Mohan, M. K., Rahul, A. V., Van Tittelboom, K., andDe Schutter, G. (2021). Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cement and Concrete Research, 139, 106258.
[32].Yuan, Q., Li, Z., Zhou, D., Huang, T., Huang, H., Jiao, D., andShi, C. (2019). A feasible method for measuring the buildability of fresh 3D printing mortar. Construction and building materials, 227, 116600.
[33].Weng, Y., Lu, B., Li, M., Liu, Z., Tan, M. J., andQian, S. (2018). Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing. Construction and Building Materials, 189, 676-685.
194
[34].Lu, B., Weng, Y., Li, M., Qian, Y., Leong, K. F., Tan, M. J., andQian, S. (2019). A systematical review of 3D printable cementitious materials. Construction and Building Materials, 207, 477-490.
[35].中國工程建設標準化協會,(2021),「中國工程建設標準化協會標準-混凝 土 3D 列 印技術規程」,中國工程建設標準化協會。
[36].Li, Z., Wang, L., andMa, G. (2018). Method for the enhancement of buildability and bending resistance of 3D printable tailing mortar. International Journal of Concrete Structures and Materials, 12(1), 1-12.
[37].Chen, Y., Chaves Figueiredo, S., Yalçinkaya, Ç., Çopuroğlu, O., Veer, F., andSchlangen, E. (2019). The effect of viscosity-modifying admixture on the extrudability of limestone and calcined clay-based cementitious material for extrusion-based 3D concrete printing. Materials, 12(9), 1374.
[38].Panda, B., Ruan, S., Unluer, C., andTan, M. J. (2019). Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay. Composites Part B: Engineering, 165, 75-83.
[39].Chen, Y., Figueiredo, S. C., Li, Z., Chang, Z., Jansen, K., Çopuroğlu, O., andSchlangen, E. (2020). Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cement and Concrete Research, 132, 106040.
[40].Arunothayan, A. R., Nematollahi, B., Ranade, R., Bong, S. H., andSanjayan, J. (2020). Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Construction and Building Materials, 257, 119546.
[41].Kolawole, J. T., Combrinck, R., andBoshoff, W. P. (2019). Measuring the thixotropy of conventional concrete: The influence of viscosity modifying agent, superplasticiser and water. Construction and Building Materials, 225, 853-867.
195
[42].Gu, X., Li, X., Zhang, W., Gao, Y., Kong, Y., Liu, J., andZhang, X. (2021). Effects of HPMC on workability and mechanical properties of concrete using iron tailings as aggregates. Materials, 14(21), 6451.
[43].Jiao, D., Shi, C., Yuan, Q., An, X., Liu, Y., andLi, H. (2017). Effect of constituents on rheological properties of fresh concrete-A review. Cement and concrete composites, 83, 146-159.
[44].Tan, M. J., Lu, B., andQian, S. Z. (2016). A review of 3D printable construction materials and applications.
[45].Xiao, J., Liu, H., andDing, T. (2021). Finite element analysis on the anisotropic behavior
of 3D printed concrete under compression and flexure. Additive Manufacturing, 39,
101712.
[46].Che, Y. and Yang, H. (2022). “Hydration products, pore structure, and compressive strength of extrusion-based 3D printed cement pastes containing nano calcium carbonate.” Case Studies in Construction Materials, 17, e01590.
[47].Geng, Z., She, W., Zuo, W., Lyu, K., Pan, H., Zhang, Y. and Miao, C. (2020). “Layer- interface properties in 3D printed concrete: Dual hierarchical structure and micromechanical characterization.” Cement and Concrete Research, 138, 106220.
[48].Sanjayan, J. G., Nematollahi, B., Xia, M., andMarchment, T. (2018). Effect of surface moisture on inter-layer strength of 3D printed concrete. Construction and building materials, 172, 468-475.
[49].Baz, B., Aouad, G., Kleib, J., Bulteel, D., andRemond, S. (2021). Durability assessment and microstructural analysis of 3D printed concrete exposed to sulfuric acid environments. Construction and Building Materials, 290, 123220.
[50].Tayeh, B. A., Bakar, B. A., Johari, M. M., andVoo, Y. L. (2012). Mechanical and permeability properties of the interface between normal concrete substrate and ultra
196
high performance fiber concrete overlay. Construction and building materials, 36, 538-
548.
[51].Xiao, J., Ji, G., Zhang, Y., Ma, G., Mechtcherine, V., Pan, J., ... andDu, S. (2021). Large- scale 3D printing concrete technology: Current status and future opportunities. Cement and Concrete Composites, 122, 104115.
[52].侯澤宇,「3D 打印纖維增強混凝土的製備與性能研究」,碩士論文,東南大學 [53].Siddique, R. (2011). Utilization of silica fume in concrete: Review of hardened
properties. Resources, Conservation and Recycling, 55(11), 923-932.
[54].Luo, T., Hua, C., Liu, F., Sun, Q., Yi, Y., andPan, X. (2022). Effect of adding solid waste silica fume as a cement paste replacement on the properties of fresh and hardened
concrete. Case Studies in Construction Materials, 16, e01048.
[55].Sanjayan, J. G., Nematollahi, B., Xia, M., andMarchment, T. (2018). Effect of surface
moisture on inter-layer strength of 3D printed concrete. Construction and building
materials, 172, 468-475.
[56].Jay G. Sanjayan,“Properties of 3D-Printed Fiber-Reinforced Portland Cement
Paste”,Construction and Building Materials 172 (2018) 468–475.
[57].Hambach, M., Rutzen, M., andVolkmer, D. (2019). Properties of 3D-printed fiber- reinforced Portland cement paste. In 3D concrete printing technology (pp. 73-113). Butterworth-Heinemann.
[58].Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G., andThorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and structures, 45, 1221-1232.
[59].Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G., andThorpe, T. (2012). Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42(3), 558-566.
197
[60].Panda, B., Paul, S. C., andTan, M. J. (2017). Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Materials Letters, 209, 146- 149.
[61]. 吳禺澄,「超高性能混凝土早期齡期之工程行為研究」,國立中興大學土木工程學 系,碩士論文 ,2019.
[62].Li, Y., Tan, K. H., andYang, E. H. (2018). Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature. Construction and Building Materials, 169, 629-637.
[63].Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., andFang, Z. (2015). A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials, 101, 741-751.
[64].Wang, X., He, J., Mosallam, A. S., Li, C., andXin, H. (2019). The effects of fiber length and volume on material properties and crack resistance of basalt fiber reinforced concrete (BFRC). Advances in Materials Science and Engineering, 2019, 1-17.
[65].Jiang, C., Fan, K., Wu, F., andChen, D. (2014). Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Materials andDesign, 58, 187-193.
[66].Shiwei Yu,“Microstructural characterization of 3D printed concrete”, Journal of Building Engineering 44 (2021) 102948
[67].Al-Rousan, E. T., Khalid, H. R., andRahman, M. K. (2023). Fresh, mechanical, and durability properties of basalt fiber-reinforced concrete (BFRC): A review. Developments in the Built Environment, 100155.
[68].M. Hassani Niaki,“Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete”, Accepted Manuscript (2018).
198
[69].Katkhuda, H., andShatarat, N. (2017). Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment. Construction and Building Materials, 140, 328-335.
[70].Hu, X., Guo, Y., Lv, J., andMao, J. (2019). The mechanical properties and chloride resistance of concrete reinforced with hybrid polypropylene and basalt fibres. Materials, 12(15), 2371
[71].Yao, S. S., Jin, F. L., Rhee, K. Y., Hui, D., andPark, S. J. (2018). Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Composites Part B: Engineering, 142, 241-250.
[72].Gu, X., Li, X., Zhang, W., Gao, Y., Kong, Y., Liu, J., andZhang, X. (2021). Effects of HPMC on workability and mechanical properties of concrete using iron tailings as aggregates. Materials, 14(21), 6451.
[73].Lachemi, M., Hossain, K. M. A., Lambros, V., Nkinamubanzi, P. C., andBouzoubaâ, N. (2004). Self-consolidating concrete incorporating new viscosity modifying admixtures. Cement and Concrete Research, 34(6), 917-926.
[74].Leemann, A., andWinnefeld, F. (2007). The effect of viscosity modifying agents on mortar and concrete. Cement and Concrete Composites, 29(5), 341-349.
[75].Ye, J., Cui, C., Yu, J., Yu, K., andDong, F. (2021). Effect of polyethylene fiber content on workability and mechanical-anisotropic properties of 3D printed ultra-high ductile concrete. Construction and Building Materials, 281, 122586.
[76].Ma, G., Li, Z., Wang, L., Wang, F., andSanjayan, J. (2019). Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Construction and Building Materials, 202, 770-783.
199
[77].Yang, L., Zhang, Y., Liu, Z., Zhao, P., andLiu, C. (2015). In-situ tracking of water transport in cement paste using X-ray computed tomography combined with CsCl enhancing. Materials Letters, 160, 381-383.
[78].Yuan, Z., andJia, Y. (2021). Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study. Construction and Building Materials, 266, 121048.
[79].He, J., Wang, Q., Yao, B., & Ho, J. (2021). Mechanical properties of high strength POM- FRCC and its performance under elevated temperatures. Construction and Building Materials, 290, 123177.
[80].Li, Y., Tan, K. H., & Yang, E. H. (2018). Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature. Construction and Building Materials, 169, 629-637.
[81].Yokota, H., Rokugo, K., & Sakata, N. (2008). JSCE recommendations for design and construction of high performance fiber reinforced cement composite with multiple fine cracks. In High Performance Fiber Reinforced Cement Composites (Vol. 2). Tokyo, Japan: Springer. |