博碩士論文 110426007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.142.55.138
姓名 黃星華(Xing-Hua Huang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以基因演算法優化無人機運送清潔機器人維 護太陽能板之最小總完工時間
相關論文
★ 半導體化學材料銷售策略分析-以跨國B化工公司為例★ TFT-LCD CELL製程P檢點燈不良解析流程改善之關聯法則應用
★ 金融風暴時期因應長鞭效應的策略 –以X公司為例★ 勞動生產力目標訂定之研究-DEA 資料包絡法應用
★ 應用田口方法導入低溫超薄ITO透明導電膜於電容式觸控面板之研究★ 多階不等效平行機台排程與訂單決策
★ 多準則決策之應用-以雷射半導體產業為例★ 專案管理模式進行品管圈活動-以半導體機台保養測機流程改善為例
★ 應用e8D降低不合格品之效益分析-以快速消費品製造為例★ 供應商評選模式之建構-以塑膠射出成型機製造為例
★ 應用協同規劃預測補貨於伺服器備品存貨改善之研究-以Q代工公司為例★ 船用五金拋光作業之生產規劃
★ 以SCOR模型探討汽車安全輔助系統供應鏈-以A公司採購作業改善為例★ 研發補助計畫執行成效評估之研究以「工業基礎技術專案計畫」為例
★ 運用生態效益發展永續之耳機產業★ 失效模式設計審查(DRBFM)之應用-以筆記型電腦為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-20以後開放)
摘要(中) 人類活動產生大量的溫室氣體,加劇了溫室效應的影響,使全球的平均溫度持續上升,而全球暖化造成的各種影響,使生活環境產生極大的變化。世界各國為了讓全球的平均溫度不再持續增加,便各自提出了眾多解決方案,而利用可再生能源取代化石燃料,能夠大幅降低溫室氣體的排放量,因此世界各國廣設太陽能板。太陽能板的發電效率會受到許多因素影響,其中環境是影響發電效率的主要原因之一,環境中的灰塵或動物糞便等髒污皆會在太陽能板上產生陰影,故太陽能板的清潔尤為重要。在傳統上是以人力進行太陽能板的清潔,但太陽能板的設置區域為屋頂或是大規模的太陽能發電廠,利用人力清潔不但費時,還有可能發生意外。若使用太陽能板清潔機器人並配合無人機進行運送,則能夠避免意外的發生,還能夠滿足分散式的太陽能板清潔需求。
由於市場上存在多種性能不同的太陽能板清潔機器人,其清潔速度、電量和可適用的最大傾斜角度等性能差異,將影響完成清潔太陽能板所需的總時間。因此,本研究的目標是在滿足所有清潔需求的前提下,選擇合適的太陽能板清潔機器人配置,以最小化總完工時間。本研究考慮了五種不同性能的太陽能板清潔機器人,並使用隨機生成的太陽能板相關資料(區域編號、面積大小、傾斜角度)進行分析。在太陽能板清潔機器人配置問題中,為了符合實際應用情境,而假設每個區域僅使用一種太陽能板清潔機器人的限制,並採用基因演算法來進行優化。以染色體來表示太陽能板清潔機器人的配置,並根據染色體的資訊對相同編號下的太陽能板清潔機器人進行派工。透過電腦實驗得知基因演算法能夠處理太陽能板清潔機器人的性能差異、區域的面積大小和傾斜角度等限制與變數。此研究能夠為太陽能板清潔領域提供實用的解決方案,並在選擇合適的清潔機器人配置時做出合理的決策。這將有助於提升清潔作業的效率、減少清潔所需的時間和人力成本。
摘要(英) Human activities emit a considerable quantity of greenhouse gases, intensifying the greenhouse effect and causing the global average temperature to increase further. The numerous effects of global warming have drastically altered the living environment. Countries throughout the world have proposed a variety of remedies to keep the global average temperature from rising further, and the use of renewable energy to replace fossil fuels can significantly decrease greenhouse gas emissions. As a result, countries all around the world have widely installed solar panels. Many elements will influence the power generation efficiency of solar panels, with the environment being one of the most important. Because dirt in the surroundings, such as dust or animal dung, casts shadows on solar panels, cleaning solar panels is critical. Traditionally, solar panels are cleaned by manpower, but the installation area of solar panels is a roof or a large-scale solar power plant. Using manpower to clean is not only time-consuming, but also may cause accidents. If a solar panel cleaning robot is used and transported with a drone, accidents can be avoided, and decentralized solar panel cleaning needs can also be met.
Because there are a number of solar panel cleaning robots on the market, differences in performance such as cleaning speed, power consumption, and appropriate maximum tilt angle will impact the overall time necessary to finish solar panel cleaning. Therefore, the purpose of this research is to choose a proper solar panel cleaning robot configuration that minimizes overall completion time while achieving all cleaning requirements. In this study, five solar panel cleaning robots with different performances were considered and analyzed using randomly generated solar panel data. In the solar panel cleaning robot configuration problem, in order to meet the actual application situation, it is assumed that each area only uses one solar panel cleaning robot, and the genetic algorithm is used for optimization. The configuration of the solar panel cleaning robot is represented by the chromosome, and the solar panel cleaning robot under the same number is dispatched according to the information of the chromosome. Through computer experiments, it is known that the genetic algorithm can handle the performance differences of solar panel cleaning robots, the size of the area and the angle of inclination, and other constraints and variables. This will help improve the efficiency of cleaning operations, reducing the time and labor costs required for cleaning.
關鍵字(中) ★ 全球暖化
★ 無人機
★ 資源分配
★ 太陽能板清潔
關鍵字(英) ★ Global Warming
★ Drone
★ Resource allocation
★ Solar panels cleaning
論文目次 目錄
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 研究問題 1
1.1 全球暖化 1
1.2 可再生能源 4
1.3 研究動機 7
1.4 題目描述 10
第二章 文獻探討 12
2.1 無人機 12
2.2 資源分配問題 15
2.3 相關研究方法 17
第三章 研究方法 21
3.1 問題分析 21
3.2 研究方法介紹 25
3.3 演算法架構及流程 36
第四章 電腦實驗 39
4.1 資料收集 39
4.2 資料分析 42
第五章 結論與未來方向 49
5.1 結論 49
5.2 未來方向 50
參考文獻 52
中文文獻 52
英文文獻 53
附錄 60


圖目錄
圖1.1 二氧化碳排放量(IEA,2022) 1
圖1.2 全球地表溫度變化(IPCC,2021) 2
圖1.3 淨零排放情境下的能源供應總量(IEA,2021) 5
圖1.4 不同能源於2010至2027的累積裝置容量(IEA,2022) 6
圖1.5 不同的太陽能板清潔方式(Song等人,2021) 8
圖1.6 無人機與太陽能板清潔機器人(ART Robotics,2020) 9
圖1.7 Drone-in-a-Box(AIROBOTICS,2023) 9
圖2.1 無人機的應用(Rovira-Sugranes等人,2022) 13
圖2.2 太陽能板與四個定位圖案(Tribak & Zaz,2018) 14
圖2.3 定位圖案之架構(Tribak & Zaz,2018) 14
圖2.4 迴流型生產(Chu 等人,2018) 17
圖 3.1 基因演算法之虛擬碼(Katoch等人,2021) 27
圖 3.2 染色體的結構 28
圖 3.3 相同型號下的派工結果 30
圖3.4 Uniform crossover 34
圖 3.5 突變 36
圖3.6 基因演算法流程圖 37
圖4.1 相同參數設置下的最小完工時間與迭代次數 40
圖4.2 群體大小差異下的最小總完工時間 43
圖 4.3 突變機率差異下的最小總完工時間 44
圖4.4 編號為1之太陽能板清潔機器人的最佳派工方式 45
圖4.5 編號為2之太陽能板清潔機器人的最佳派工方式 46
圖 4.6 編號為3之太陽能板清潔機器人的最佳派工方式 46
圖 4.7 編號為4之太陽能板清潔機器人的最佳派工方式 47
圖 4.8 編號為5之太陽能板清潔機器人的最佳派工方式 47


表目錄
表1.1 五種情境下的全球表面溫度估計(IPCC,2021) 3
表2.1 研究方法彙整 18
表 3.1 太陽能板清潔機器人性能彙整 22
表 3.2 太陽能板清潔機器人之編號 23
表 3.3 不同等級之太陽能板 24
表3.4 基因演算法重要參數 38
表 4.1 太陽能板清潔機器人之清潔總面積 39
表 4.2 參數設置 41
表 4.3 參數組合 42
表4.4 實驗結果 43
參考文獻 參考文獻
中文文獻
[1] 劉韋廷,2022。〈智慧能源週〉友達推太陽能板清潔機器人 拚明年下半年量產。網站:https://news.cnyes.com/news/id/4982766?exp=a(上網日期:2023年3月20日)。
[2] 環境資訊中心,2021。政院上調屋頂型光電目標至8GW 王美花:工廠屋頂可增1GW。網站:https://e-info.org.tw/node/229646(上網日期:2023年1月10日)。
[3] 交通部民用航空局,2022。遙控無人機管理規則。網站:https://www.caa.gov.tw/Article.aspx?a=3733&lang=1(上網日期:2023年4月6日。
[4] 經濟部,2020。能源轉型白皮書(核定本)。網站:https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=13178&sub_menu_id=13180(上網日期:2023年1月6日)。
[5] 經濟部能源局,2013。太陽光電模組產品。網站:https://www.tcpv.org.tw/Product/(上網日期:2023年3月29日)。
[6] 經濟部能源局,2022。能源統計月報。網站:https://www.esist.org.tw/publication/monthly_detail?Id=2e7321193234(上網日期:2023年1月6日)。
[7] 行政院,2017。太陽光電2年推動計畫說明(修正版)。網站:https://www.ey.gov.tw/Goals/E8BA2FC96898A19(上網日期:2023年1月6日)。
[8] 友達光電,2022。2022 Energy Taiwan_AUO 友達光電太陽能壓軸直播_10/21(五)。網站:https://www.youtube.com/watch?v=M5KlAj9bCJI(上網日期:2023年3月20日)。
英文文獻
[9] AIROBOTICS. AUTOMATED DRONES. https://www.airoboticsdrones.com/ (accessed on 10 January 2023).
[10] ART Robotics, 2020. HELIOS: An automated solar panel cleaning service. https://art-robotics.com/cases/helios/#av_section_2 (accessed on 10 January 2023).
[11] Beasley, J. E., & Chu, P. C., 1996. A genetic algorithm for the set covering problem. European Journal of Operational Research, vol. 94, pp. 392-404. https://doi.org/10.1016/0377-2217(95)00159-x.
[12] Blade Ranger, 2023. OPTIMIZE YOUR C&I SOLAR PANEL CLEANING. https://bladeranger.com/pleco/ (accessed on 10 March 2023).
[13] Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S. H., & Goudos, S. K., 2022. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things, vol. 18, Article 100187. https://doi.org/10.1016/j.iot.2020.100187.
[14] Buendia, E. C., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y.,Shermanau, P., & Federici, S. (eds), 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 1: General Guidance and Reporting. https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol1.html (accessed on 20 December 2022).
[15] Chaudhry, I. A., 2010. Minimizing flow time for the worker assignment problem in identical parallel machine models using GA. International Journal of Advanced Manufacturing Technology, vol. 48, pp. 747-760. https://doi.org/10.1007/s00170-009-2323-1.
[16] Chu, F., Liu, M., Liu, X., Chu, C. B., & Jiang, J., 2018. Reentrant Flow Shop Scheduling considering Multiresource Qualification Matching. Scientific Programming, vol. 2018, Article 2615096. https://doi.org/10.1155/2018/2615096.
[17] Ecke, S., Dempewolf, J., Frey, J., Schwaller, A., Endres, E., Klemmt, H. J., Tiede, D., & Seifert, T., 2022. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sensing, vol. 14, Article 3205. https://doi.org/10.3390/rs14133205.
[18] Ecoppia. Robotic solution for Single axis tracker. https://www.ecoppia.com/solutions (accessed on 10 March 2023).
[19] Flytrex, 2022. 2022 HIGHFLIGHTS. https://www.flytrex.com/highflights-2022 (accessed on 6 June 2023).
[20] Intergovernmental Panel on Climate Change. About the IPCC. https://www.ipcc.ch/about/ (accessed on 23 December 2022).
[21] Intergovernmental Panel on Climate Change, 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf` (accessed on 23 December 2022).
[22] International Energy Agency, 2021. Net Zero by 2050: A Roadmap for the Global Energy Sector. https://www.iea.org/reports/net-zero-by-2050 (accessed on 23 December 2022).
[23] International Energy Agency, 2022. Global Energy Review: CO2 Emissions in 2021. https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (accessed on 23 December 2022).
[24] International Energy Agency, 2022. Renewables 2022: Analysis and forecast to 2027. https://www.iea.org/reports/renewables-2022 (accessed on 26 December 2022).
[25] Katoch, S., Chauhan, S. S., & Kumar, V., 2021. A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, vol. 80, pp. 8091-8126. https://doi.org/10.1007/s11042-020-10139-6.
[26] Kong, X., Xi, Z., Wei, S., Ding, S., Chen, L., Yang, Q., Yan, W., 2019a. Infrared Vision Based Automatic Navigation and Inspection Strategy for Photovoltaic Power Plant Using UAVs. Chinese Control And Decision Conference (CCDC), Nanchang, China, 2019, pp. 347-352. https://doi.org/10.1109/CCDC.2019.8832673.
[27] Kong, X., Gao, Y., Wang, T., Liu, J., & Xu, W., 2019b. Multi-robot Task Allocation Strategy based on Particle Swarm Optimization and Greedy Algorithm. IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 2019, pp. 1643-1646. https://doi.org/10.1109/ITAIC.2019.8785472.
[28] Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S., 2016. Power loss due to soiling on solar panel: A review. Renewable & Sustainable Energy Reviews, vol. 59, pp. 1307-1316. https://doi.org/10.1016/j.rser.2016.01.044.
[29] MIRAI. Solar Cleaning Robot. https://miraikikai.jp/wp/wp-content/uploads/2019/12/Type1.pdf (accessed on 10 March 2023).
[30] Newkirk, J. M., Nayshevsky, I., Sinha, A., Law, A. M., Xu, Q. F., To, B., Ndione, P. F., Schelhas, L. T., Walls, J. M., Lyons, A. M., & Miller, D. C., 2021. Artificial linear brush abrasion of coatings for photovoltaic module first-surfaces. Solar Energy Materials and Solar Cells, vol. 219, Jan 2021, Article 110757. https://doi.org/10.1016/j.solmat.2020.110757.
[31] Niccolai, A., Grimaccia, F., Leva S., & Eleftheriadis, P., 2021. Photovoltaic Plant Inspection by means of UAV: current practices and future perspectives, 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Bari, Italy, 2021, pp. 1-6. https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584727.
[32] Olorunfemi, B. O., Ogbolumani, O. A., & Nwulu, N., 2022. Solar Panels Dirt Monitoring and Cleaning for Performance Improvement: A Systematic Review on Smart Systems. Sustainability, vol. 14, Sep 2022, Article 10920. https://doi.org/10.3390/su141710920.
[33] Rachmawati, T. S. N., & Kim, S., 2022. Unmanned Aerial Vehicles (UAV) Integration with Digital Technologies toward Construction 4.0: A Systematic Literature Review. Sustainability, vol. 14, Article 5708. https://doi.org/10.3390/su14095708.
[34] Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O′Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Samir, K. C., Leimbach, M., Jiang, L. W., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Silva, L. A. D. S., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., Tavoni, M., 2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change-Human Policy Dimens, vol. 42, Jan 2017, pp. 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009.
[35] Rovira-Sugranes, A., Razi, A., Afghah, F., & Chakareski, J., 2022. A review of AI-enabled routing protocols for UAV networks: Trends, challenges, and future outlook. Ad Hoc Networks, vol. 130, Article 102790. https://doi.org/10.1016/j.adhoc.2022.102790.
[36] Salamanca, S., Merchán, P., & García, I., 2017. On the detection of solar panels by image processing techniques. 25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta, 2017, pp. 478-483. https://doi.org/10.1109/MED.2017.7984163.
[37] Shahmoradi, J., Talebi, E., Roghanchi, P., & Hassanalian, M., 2020. A Comprehensive Review of Applications of Drone Technology in the Mining Industry. Drones, vol. 4, Article 34. https://doi.org/10.3390/drones4030034.
[38] Solar Energy Industries Association. Solar Energy. https://www.seia.org/initiatives/about-solar-energy (accessed on 24 December 2022).
[39] SolarCleano. Technical Data Sheet – SolarCleano F1A. https://solarcleano.com/files/products/1639480487_SolarCleano-Solarcleano-F1A-data-sheet-Metrics-EN.pdf (accessed on 10 March 2023).
[40] Soleimanpour-Moghadam, M. & Nezamabadi-Pour, H., 2020. Discrete Genetic Algorithm for Solving Task Allocation of Multi-robot Systems. 4th Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), Mashhad, Iran, 2020, pp. 6-9. https://doi.org/10.1109/CSIEC49655.2020.9237316.
[41] Song, Z., Liu, J., & Yang, H. X., 2021. Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review. Applied Energy, vol. 298, Article 117247. https://doi.org/10.1016/j.apenergy.2021.117247.
[42] Tang, J., Liu, G., & Pan, Q. T., 2021. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends. Ieee-Caa Journal of Automatica Sinica, vol. 8, pp. 1627-1643. https://doi.org/10.1109/jas.2021.1004129.
[43] Tribak, H. & Zaz, Y., 2018. Remote Solar Panels Identification Based on Patterns Localization. 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 2018, pp. 1-5. https://doi.org/10.1109/IRSEC.2018.8702835.
[44] United Nations, 1992. United Nations Framework Convention On Climate Change. https://unfccc.int/files/essential_background/background_publications_htmlpdf/application/pdf/conveng.pdf(accessed on 13 December 2022).
[45] United Nations, 1998. Kyoto Protocol To The United Nations Framework Convention On Climate Change. https://unfccc.int/resource/docs/convkp/kpeng.pdf (accessed on 23 December 2022).
[46] United Nations, 2015. Paris Agreement. https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 13 December 2022).
[47] United Nations. What is renewable energy. https://www.un.org/en/climatechange/what-is-renewable-energy (accessed on 24 December 2022).
[48] United Nations Climate Change. Conference of the Parties (COP). https://unfccc.int/process/bodies/supreme-bodies/conference-of-the-parties-cop (accessed on 23 December 2022).
[49] United Nations Climate Change. Nationally Determined Contributions (NDCs). https://unfccc.int/ndc-information/nationally-determined-contributions-ndcs (accessed on 23 December 2022).
[50] Wang, J. Y., 2019. Algorithms for Minimizing Resource Consumption Over Multiple Machines With a Common Due Window. Ieee Access, vol. 7, pp. 172136-172151. https://doi.org/10.1109/access.2019.2956551.
[51] Wang, S., Liu, Y., Qiu, Y., Zhang, Q., Ma, J., & Zhou, J., 2021. Cooperative Task Allocation for Multiple UAVs Based on Min-max Ant Colony System. 5th Asian Conference on Artificial Intelligence Technology (ACAIT), Haikou, China, 2021, pp. 283-286. https://doi.org/10.1109/ACAIT53529.2021.9731129.
[52] Wu, F., Zhang, D., Li, X., Luo, X., Wang, J., Yan, W., Chen, Z., & Yang, Q., 2017. Aerial image recognition and matching for inspection of large-scale photovoltaic farms. International Smart Cities Conference (ISC2), Wuxi, China, 2017, pp. 1-6. https://doi.org/10.1109/ISC2.2017.8090792.
[53] Yao, Y. & Hu, Y., 2017. Recognition and location of solar panels based on machine vision. 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Wuhan, China, 2017, pp. 7-12. https://doi.org/10.1109/ACIRS.2017.7986055.
[54] Yuan, S., Skinner, B., Huang, S. D., & Liu, D. K., 2013. A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms. European Journal of Operational Research, vol. 228, pp. 72-82. https://doi.org/10.1016/j.ejor.2013.01.043.
[55] Zhu, L., Liu, G. Y., Lin, B., & Wang, J. L., 2022. A Morphology and Coordinate Fusion-Based Positioning Method for Solar Cell Classification. IEEE Sensors Journal, vol. 22, pp. 19656-19665. https://doi.org/10.1109/jsen.2022.3202898.
指導教授 王啟泰(Chi-Tai Wang) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明