摘要(英) |
Countries have proposed the "2050 Net Zero Emissions" action, expecting to
achieve carbon reduction through technologies such as energy efficiency, behavior
change, electrification and renewable energy. As a key role, campuses are crucial to
implementing energy-saving measures with limited resources in the face of rising
energy costs in the future. The first step is how to reduce the use of CO2. The
development of renewable energy and power storage devices is the most common
method. One way to improve the availability of renewable energy is to use two or
more energy sources at the same time to improve system efficiency. Especially when
wind and solar are combined. Therefore, based on the above reasons, this study
explores the feasible schemes for campuses to achieve net zero carbon emissions,
with the goal of minimizing the total cost and expecting to implement carbon
reduction measures to the greatest extent. In order to clarify the benefits of carbon
reduction, the research intends to propose two methods for reducing carbon emissions:
improving the lighting system and erecting distributed power generation and energy
storage devices. The goal of zero carbon emission enables the practical
implementation of sustainable development issues in life.
The results show that the two proposed net-zero carbon measures, implemented
together, lead to the smallest overall cost to the model. The best result of the model.
Distributed power generation devices account for 88% of the total available area, and
additional electricity purchase fees from Taipower and all the costs considered in the
model are required. The final minimum total cost calculated by the model is NTD$
2,914,963 , and carbon emissions are reduced and the rate reached 45.2%. The study
also aimed at Taiwan′s future net zero carbon emission goals, planning for
decarbonization of power energy to 60-70% of the total power, and the policy of imposing carbon taxes. The results show that in this study, to achieve this result, each
kWh Only NTD $ 5-10 can be charged. To sum up the above, although at the current
stage, due to the high cost of renewable energy and energy storage devices, and the
low electricity price of Taipower, it is difficult to increase investment willingness, but
these measures can indeed help the research field reduce carbon emissions. In the
future, the research field will follow the collection of carbon tax and the reduction of
levelized energy costs are believed to reduce the cost of purchasing electricity from
power companies and generating electricity by ourselves. |
參考文獻 |
參考文獻
中文文獻
[1] 工業技術研究院 (2019)。電力部門需求面管理。
[2] 工業技術研究院 (2022)。零碳電力下長時儲能(LDES)角色與重要性初探。
[3] 工商時報 (2022)。未來儲能將有更多選擇。檢自:https://view.ctee.com.tw/esg/
35796.html (訪問於 2023 年 4 月 6 日)。
[4] 台灣電力公司 (2021a)。計畫性減少用電措施。
[5] 台灣電力公司 (2021b)。校園空調自動需量反應。
[6] 台灣電力公司 (2023)。各種發電方式之發電成本。檢自:https://www.taipower.
com.tw/tc/page.aspx?mid=196&cid=4234&cchk=f2a96850-f33e-4d23-b630-8fe
e00cd1a76 (訪問於 2023 年 4 月 3 日)。
[7] 行政院 (2017)。太陽光電 2 年推動計畫。
[8] 交通部中央氣象局 (2022)。農業氣象觀測網監測系統。檢自:https://agr.cwb.
gov.tw/NAGR/history/station_hour (訪問於 2023 年 4 月 8 日)。
[9] 茂迪股份有限公司 (2022)。單玻單面 PERC 模組。檢自:https://www.motech.
com.tw/modules-1.php (訪問於 2023 年 4 月 13 日)。
[10] 財訊新聞中心 (2022)。一文秒懂電力單位關鍵字這,樣說明儲能續航力。
檢自:https://www.wealth.com.tw/articles/a681b4c3-a0d7-4f19-932d-ededc4a
19092 (訪問於 2023 年 4 月 8 日)。
[11] 國家發展委員會 (2022)。台灣 2050 淨零排放路淨及策略總說明。
[12] 教育部 (2004)。學校教室照明與節能參考手冊。
[13] 教育部 (2020)。政府機關及學校用電效率管理計畫。
[14] 教育部 (2022a)。多面向(含公民電廠)推動設置太陽光電前導型獎勵措施。
[15] 教育部 (2022b)。教育部補助永續循環校園計畫作業要點。
[16] 經濟部能源局 (2016)。再生能源廠商力拼儲能新技術,2025 年大型蓄電池
的全球市場規模將達 43.53 億美元。檢自:https://km.twenergy.org.tw/Data/
db_more?id=1235 (訪問於 2023 年 3 月 30 日)
[17] 經濟部能源局 (2020)。能源轉型白皮書。
[18] 經濟部能源局 (2021)。110 年度電力排碳係數。
[19] 劉瑞弘(2016)。有關風力發電,你一定要知道的十件事。科技大觀園。檢自:
https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=80a0e953-9624-4e1d-b
bf1-afb66a81ddd5 (訪問於 2023 年 3 月 28 日)。
[20] 綠色和平 (2020)。全球暖化下台灣海平面上升和暴潮衝擊分析。
[21] 綠色和平 (2021)。「有效碳定價」解盲。
[22] 遠見雜誌 (2022)。碳定價時代來臨!碳稅、碳費對產業影響一次看。檢自:
https://esg.gvm.com.tw/article/14384 (訪問於 2023 年 4 月 10 日)。
英文文獻
[23] Ahmad, F., Alam, M. S., & Alsaidan, I. S. (2020). Campus Microgrid: A Case
Study. 2020 IEEE/PES Transmission and Distribution Conference and
Exposition (T&D). https://doi.org/10.1109/td39804.2020.9.
[24] Alshuwaikhat, H. M., & Abubakar, I. (2008). An Integrated Approach to
Achieving Campus Sustainability: Assessment of the Current Campus
Environmental Management Practices. Journal of Cleaner Production, 16(16),
pp. 1777–1785. https://doi.org/10.1016/j.jclepro.2007.12.002.
[25] Angelim, J. H., & Affonso, C. M. (2018). Energy Management on University
Campus with Photovoltaic Generation and BESS Using Simulated Annealing.
2018 IEEE Texas Power and Energy Conference (TPEC).
https://doi.org/10.1109/TPEC.2018.8312112.
[26] Bloomberg New Energy Finance (2022). New Energy Outlook 2022.
[27] Chang, C. C., Ho, Y. F., Wei, C. C., & Wang, H. L. (2014). Multi-objective
Programming Model for Energy Conservation and Renewable Energy Structure
of A Low Carbon Campus. Energy and Buildings, 80, pp.
461–468.https://doi.org/10.1016/j.enbuild.2014.04.054.
[28] Chaplin, G., Dibaj, M., & Akrami, M. (2022). Decarbonising Universities: Case
Study of the University of Exeter’s Green Strategy Plans Based on Analysing Its
Energy Demand in 2012–2020. Sustainability 2022, 14, 4085.
https://doi.org/10.3390/su14074085.
[29] Cornell University (2016). Options for Achieving a Carbon Neutral Campus by
2035.
[30] ECLECTIC ENERGY (2022). D400 Wind Generator. Retrieved from
https://eclectic-energy.co.uk/products/d400-wind-generator/ (Accessed: Jun 12,
2023).
[31] Fonseca, P., Moura, P., Jorge, H., & de Almeida, A. (2018). Sustainability in
University Campus: Options for Achieving Nearly Zero Energy Goals.
International Journal of Sustainability in Higher Education, 19(4), pp. 790–816.
https://doi.org/10.1108/ijshe-09-2017-0145.
[32] Ho, W. S., Chin, H. Y., Wong, K. C., Muis, Z. A., & Hashim, H. (2013).
Grid-connected Distributed Energy Generation System Planning and Scheduling.
Desalination and Water Treatment, 52(4-6), pp. 1202–1213.http://dx.doi.org/10.
1080/19443994.2013.826785.
[33] Hu, H., Sun, F., Guo, W., & Pan, L. (2022). Net-Zero Intelligent Energy System:
Road to a Successful Carbon Neutral Future. 2022 12th International Conference
on Power, Energy and Electrical Engineering (CPEEE), pp. 285-291. http://dx.doi.org/10.1109/CPEEE54404.2022.9738663.
[34] International Energy Agency (2021). Net Zero by 2050 A Roadmap for the
Global Energy Sector.
[35] International Renewable Energy Agency (2022). World Energy Transitions
Outlook 2022: 1.5°C Pathway.
[36] Kazemi Rad, M., Riley, D., Asadi, S., & Delgoshaei, P. (2017). Improving the
Performance Profile of Energy Conservation Measures at the Penn State
University Park Campus. Engineering, Construction and Architectural
Management, 24(4), pp. 610–628. https://doi.org/10.1108/ECAM-02-2016-0050.
[37] Lee C.T., Chen L.B., Chu H.M., Hsieh C.J., & Liang W.C. (2022). An Internet of
Things (IoT)-Based Master-Slave Regionalized Intelligent
LED-Light-Controlling System. Applied Sciences. 12(1), 420.
https://doi.org/10.3390/app12010420
[38] Martelli, E., Freschini, M., & Zatti, M. (2020). Optimization of Renewable
Energy Subsidy and Carbon Tax for Multi Energy Systems Using Bilevel
Programming. Applied Energy, 267, 115089. https://doi.org/10.1016/j.apenergy.2
020.115089.
[39] Massachusetts Institute of Technology (2017).MIT Plan for Action on Climate
Change.
[40] Menon P. V., & Bajpai P. (2020). Battery Storage System Planning in an
Academic Campus Distribution Network. 2020 21st National Power Systems
Conference (NPSC), pp. 1-6. https://doi.org/10.1109/NPSC49263.2020.9331906.
[41] Mirzaei Alavijeh, N., Steen, D., Norwood, Z., Anh Tuan, L., & Agathokleous, C.
(2020). Cost-Effectiveness of Carbon Emission Abatement Strategies for a Local
Multi-Energy System—A Case Study of Chalmers University of Technology
Campus. Energies, 13(7), 1626. https://doi.org/10.3390/en13071626.
[42] Muqeet, H. A. U., & Ahmad, A. (2020). Optimal Scheduling for Campus
Prosumer Microgrid Considering Price Based Demand Response. IEEE Access,
1–1. https://doi.org/10.1109/ACCESS.2020.2987915.
[43] Sharma, Y., Saxena, B. K., & Mishra, S. (2020). Feasibility Analysis of Energy
Sustainable Campus using PV-Wind Hybrid Power System. 2020 12th
International Conference on Computational Intelligence and Communication
Networks(CICN), pp. 234-238. https://doi.org/10.1109/CICN49253.2020.924260
7.
[44] Sima, C. A., Popescu, M. O., Popescu, C. L., Alexandru, M., Popa, L. B.,
Dumbrava, V., & Panait, C. (2021). Energy Management of a Cluster of
Buildings in a University Campus. 2021 12th International Symposium on
Advanced Topics in Electrical Engineering (ATEE), pp. 1-6.
https://doi.org/10.1109/atee52255.2021.
[45] The World Bank (2022). State and Trends of Carbon Pricing.
[46] United Nations (1992). United Nations Framework Convention on Climate
Change.
[47] United Nations (2015). Paris Agreement.
[48] United Nations Environment Programme (2022). Emissions Gap Report 2022.
[49] World Meteorological Organization (2022). United in Science 2022. |